Geçen hafta anlatılanlar Değişmez küme Değişmez kümelerin kararlılığı Bildiğimiz diğer kararlılık tanımları ve değişmez kümenin kararlılığı ile ilgileri.

Slides:



Advertisements
Benzer bir sunumlar
Baz Değişimi Bir sorun için uygun olan bir baz, bir diğeri için uygun olmayabilir, bu nedenle bir bazdan diğerine değişim için vektör uzayları ile çalışmak.
Advertisements

Doğrusal Kararlılık Analizi
Support Vector Machines
FONKSİYONLAR ve GRAFİKLER
Projemizin İçeriği: Anahtarlanmış Doğrusal Sistemler
İŞLEM TANIM: A boş olmayan bir küme olmak üzere,A×A nın bir R alt kümesinden A ya tanımlanan her fonksiyona, işlem denir.İşlemi tanımlarken,’’
Bölüm6:Diferansiyel Denklemler: Başlangıç Değer Problemleri
POLİNOMLARIN KÖKLERİNİ BELİRLEMEYE İLİŞKİN YÖNTEMLER VE BU YÖNTEMLERİN SİSTEM KARARLILIĞIYLA OLAN İLİŞKİSİ Hazırlayan:Cihan Soylu.
Mustafa Kösem Özkan Karabacak
DERSİMİZİ ŞU ANA BAŞLIKLAR HALİNDE İNCELEYECEĞİZ.
Bölüm5 :Kök Bulma Sayısal bilgisayarlar çıkmadan önce, cebirsel denklemlerin köklerini çözmek için çeşitli yollar vardı. Bazı durumlarda, eşitliğinde olduğu.
DOĞRUSAL DENKLEM SİSTEMLERİ ve MATRİSLER
Yrd.Doç.Dr. Mustafa Akkol
İSMAİL EKSİKLİ Öğr. No:
KARMAŞIK SAYILAR.
Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri
İÇİNDEKİLER: TÜREV KAVRAMI TÜREV ALMA KURALLARI FONKSİYON TÜREVLERİ TÜREV UYGULAMALARI.
Dinamik sistemin kararlılığını incelemenin kolay bir yolu var mı? niye böyle bir soru sorduk? Teorem 1: (ayrık zaman sisteminin sabit noktasının kararlılığı.
V2’nin q1 doğrultusunda ki bileşenine
BİYOMEDİKAL MÜHENDİSLİĞİNDE İLERİ KONULAR Neslihan Serap Şengör Oda no: 1107 Tel:
Devre ve Sistem Analizi
Devre ve Sistem Analizi Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Bir örnek : Sarkaç. Gradyen Sistemler E(x)’in zamana göre türevi çözümler boyunca Gradyen sistemlere ilişkin özellikler Teorem 6: (Hirsh-Smale-Devaney,
A1 sistemi A2 sistemi Hangisi daha hızlı sıfıra yaklaşıyor ? Hatırlatma.
Hatırlatma: Durum Denklemleri
Kararlılık Sıfır giriş kararlılığı Tanım: (Denge noktası) sisteminin sabit çözümleri, sistemin denge noktalarıdır. nasıl belirlenir? Cebrik denkleminin.
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
Hopfield Ağı Ayrık zamanSürekli zaman Denge noktasının kararlılığı Lyapunov Anlamında kararlılık Lineer olmayan sistemin kararlılığı Tam Kararlılık Dinamik.
Kaos’a varmanın yolları DüzenKaos Nasıl? Umulmadık yapısal değişiklikler ile Bu nasıl oluşabilir? Ardışıl bir dizi dallanma ile, peryod katlanmasına yol.
Tanım: (Lyapunov anlamında kararlılık)
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Özkan Karabacak oda no:2307 tel.
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Düğüm-Eyer dallanması için ele alınan ön-örneğe yüksek mertebeden terimler eklense davranışı yapısal olarak değişir mi? Bu soru neden önemli Lemma sistemi.
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Müştak Erhan Yalçın oda no:2304.
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Lineer cebrin temel teoremi-kısım 1
Doğrusal Olmayan Devreler, Sistemler ve Kaos
x* denge noktası olmak üzere x* sabit nokta olmak üzere
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Devre ve Sistem Analizi
Dinamik Sistem Dinamik sistem: (T, X, φt ) φt : X X a1) φ0=I
Doğrusal Olmayan Devreler, Sistemler ve Kaos
h homeomorfizm h homeomorfizm h 1-e-1 ve üstüne h sürekli h
Poincare Dönüşümü
Özdeğerler, Sıfırlar ve Kutuplar
Dinamik Yapay Sinir Ağı Modelleri
Dinamik Sistem T=R sürekli zaman Dinamik sistem: (T, X, φt ) T zaman
Sistem Özellikleri: Yönetilebilirlik, Gözlenebilirlik
Dizinin Yakınsaklığı, Limit
İlk olarak geçen hafta farklı a değerleri için incelediğiniz lineer sisteme bakalım: MATLAB ile elde ettiğiniz sonuçları analitik ifade ile elde edilen.
Bazı sorular: Topolojik eşdeğerlilik ne işimize yarayacak, topolojik
Teorem 2: Lineer zamanla değişmeyen sistemi
Geçen hafta ne yapmıştık
Bazı sorular: Topolojik eşdeğerlilik ne işimize yarayacak, topolojik
Kaos için bir yol: çek katla
Geçen haftaki tanımlar:
Teorem 2: Lineer zamanla değişmeyen sistemi
Sinir Hücresi McCulloch-Pitts x1 w1 x2 w2 v y wm xm wm+1 1 '
Hopfield Ağı Ayrık zaman Sürekli zaman
Sistem Özellikleri: Yönetilebilirlik, Gözlenebilirlik
Banach Sabit Nokta Teoremi (Büzülme Teoremi)
Hatırlatma Yörünge: Or(xo)
Sistem Özellikleri: Yönetilebilirlik, Gözlenebilirlik ve Kararlılık
Banach Sabit Nokta Teoremi (Büzülme Teoremi)
Düğüm-Eyer Dallanması
Bazı Doğrusal Olmayan Sistemler
DERSİMİZİ ŞU ANA BAŞLIKLAR HALİNDE İNCELEYECEĞİZ.
DERSİMİZİ ŞU ANA BAŞLIKLAR HALİNDE İNCELEYECEĞİZ.
DERSİMİZİ ŞU ANA BAŞLIKLAR HALİNDE İNCELEYECEĞİZ.
G(s) 2b-1 Laplace Dönüşümü:
Sunum transkripti:

Geçen hafta anlatılanlar Değişmez küme Değişmez kümelerin kararlılığı Bildiğimiz diğer kararlılık tanımları ve değişmez kümenin kararlılığı ile ilgileri Asimptotik kararlılığı ne bilirdik değişmez kümeler için tanımı ne? Lyapunov anlamında kararlılığı incelemek için tanıma göre neye ihtiyacımız var? Çözüm her arandığında bulunur mu? Bulunduğunda işe yarar mı?

Dinamik sistemin kararlılığını incelemenin kolay bir yolu var mı? niye böyle bir soru sorduk? Teorem 1: (ayrık zaman sisteminin sabit noktasının kararlılığı için yeter koşul) kararlıdır

Bir örnek: Henon Dönüşümü

Denge noktaları kararlı mı?

Teorem 2: (Ayrık zaman sisteminin sabit noktasının varlığı ve kararlılığı için yeter koşul) tam metrik uzay bu metrik uzayda tanımlanmış bir metrik Ayrık zaman dinamik sisteminin bir kararlı sabit noktası vardır ve Teorem 1’den farklı ne söylemekte?

Sürekli zaman dinamik sistemlerinin kararlılığını nasıl inceleyeceğiz? Öncelikle, çözümün varlığından tekliğinden ve ilk koşullara sürekli bağımlılığından emin olmalıyız Teorem 3: (Sürekli zaman dinamik sisteminin çözümünün varlığı, tekliği ve ilk koşullara sürekli bağlılığı için yeter koşul ) ‘de açık bölge için aşağıdaki koşulları sağlayan tek bir vardır. ‘da başlayan çözüm

çözümü her için neleri belirliyor? çözüm yörünge Gelişim fonksiyonu Peki, ayrık zamanda ne oluyordu? Artık çözümlerin varlığı ve tekliğini biliyoruz, yeniden kararlı değişmez kümelere bakalım Ayrık zaman için yazılan Teorem 1 gibi bir teorem sürekli zaman için de var mı? Teorem 4: (Lyapunov ) kararlıdır trajectory orbit

Bir örnek: Lorenz Osilatörü

Teorem 5: (Lyapunov’un ikinci metodu) kararlıdır Bu teorem benzer şekilde ayrık zaman içinde var Lyapunov fonksiyonunu nasıl bulacağız? Fiziksel sistemin davranışına ilişkin denklemler Fiziksel sistemde depolanmış enerjiye ilişkin denklemler Sakınımlı sistemler Gradyen sistemler

Hamiltonyan Sistemler LC devresi Sürtünmesiz Sarkaç

Bir örnek : Sarkaç

Gradyen Sistemler E(x)’in zamana göre türevi çözümler boyunca Gradyen sistemlere ilişkin özellikler Teorem 6: (Hirsh-Smale-Devaney, sf. 205) E(x)’in olağan noktası dinamik sistemin denge noktaları ‘in izole minimumu ise asimptotik kararlı denge noktasıdır

Bir örnek daha E(x)’e ilişkin eş düzey eğrileri Durum portresi M.W.Hirsh, S. Smale, R.L. Devaney,”Differential Equations, Dynamical Systems and An Introduction to Chaos”, Elsevier, 2004.

Lineer sistemler için Lyapunov fonksiyonunu Ne olmalı? Teorem 7: (Pozitif Reel Lemma- Khalil sf. 240) pxp boyutlu transfer fonksiyonu matrisi yönetilebilir gözlenebilir olmak üzere aşağıdaki eşitlikleri sağlayan P,L,W matrisleri bulunabiliniyorsa G(s) pozitif reeldir.

Tüm bu teoremler, denge noktası veya sabit noktadan oluşan değişmez kümelerin kararlılığına ilişkin yeter koşulları veriyor. Limit çevrim, veya daha başka çözümler için ne yapılabilinir? Teorem 8: (Poincare-Bendixson) kapalı, sınırlı de ya denge noktası yok ya da Değişmez küme Çevrim

Liénard’ın denklemi f,g є C 1, f,g: R + R g tek, f çift fonksiyon g(x)>0, t Ayrıca orijin civarında kararlı limit çevrim var

özel olarak.... Van der Pol Osilatörü