Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

ÇEŞİTLİ ÇATI TİPLERİNDE RÜZGAR YÜKLERİNİN DENEYSEL VE NÜMERİK OLARAK İNCELENMESİ Mak.Y.Müh. Mustafa Atmaca Haziran 2003 - Sakarya.

Benzer bir sunumlar


... konulu sunumlar: "ÇEŞİTLİ ÇATI TİPLERİNDE RÜZGAR YÜKLERİNİN DENEYSEL VE NÜMERİK OLARAK İNCELENMESİ Mak.Y.Müh. Mustafa Atmaca Haziran 2003 - Sakarya."— Sunum transkripti:

1 ÇEŞİTLİ ÇATI TİPLERİNDE RÜZGAR YÜKLERİNİN DENEYSEL VE NÜMERİK OLARAK İNCELENMESİ Mak.Y.Müh. Mustafa Atmaca Haziran Sakarya

2 1. Giriş 2. Amaç ve Yöntem 3. Literatür Araştırması 4. Deneysel Yöntem ve Sonuçlar 5. Rüzgar Basınç Ölçümleri 6. Ölçülen Verilerin Hesaplama Metodu 7. Basınç Katsayıları için Deneysel Ölçümler 8. Deneysel Ortalama Basınç Katsayıları 9. Türbülans Yoğunlu Ölçümleri

3 10. Nümerik Metod ve Hesaplamalar 11. Ağ Sayısı ve Türbülans Modeli Etkisi 12. Hesaplama Uzayı Özellikleri ve Sınır Şartları 13. Basınç Katsayıları için Nümerik Hesaplamalar 14. TS498e Öneri 15. Sonuçlar ve Tartışma

4 GİRİŞ Yapının en üst elemanı olan çatılar; binayı yukarıdan gelen yağmur, kar, rüzgar ve diğer atmosferik etkilerden (soğuk, sıcak) korur. Bu nedenle fonksiyonel olarak bir yapıda çok fazla önemi vardır. Rüzgar etkisinin tespiti için öncelikle yapı civarında rüzgarın özelliklerinin bilinmesi gerekir. Rüzgar özelliklerinin bilinmesi için, rüzgarın yapı civarındaki hızının doğrultu ve şiddetinin yer ve zamanla değişiminin bilinmesi yeterlidir.

5 Amaç ve Yöntem Ülkemizin çeşitli bölgelerinde çok sık aralıklarla çatı uçmaları ve çatı çökmeleri ile karşılaşılmaktadır ve çatılarla ilgili bu olaylar sonucunda hem can kayıpları, hem de büyük maddi kayıplar ortaya çıkmaktadır. Literatür çalışması neticesinde yurt dışında çatılar üzerinde bu tarz çalışmaların yaygın olduğu, fakat Türkiyede yeterli olmadığı görülmüştür. Türkiyede ise ülkemize özgü çatılar üzerinde deneysel ve nümerik araştırmaların yapılabilmesi, bu konudaki ülkemizdeki açığın kapatılması amaçlanmıştır

6 Bu kayıpların önüne geçebilmek ve bu olayların sebeplerinin gerçekçi olarak tespiti amacı ile farklı çatı modelleri (α=10 o, α=20 o ve α=30 o eğimli beşik tipi çatılar) üzerindeki rüzgar yüklerini incelemek amacı ile rüzgar tünelinde deneysel ölçümler yapılmış, daha sonra bu çatıların nümerik modelleri oluşturulup nümerik çözümler elde edilmiş ve deneysel sonuçlar ile karşılaştırılmıştır. Deneysel ölçümü yapılamayan model ve tipteki çatılar için de daha sonra nümerik simülasyon çalışmaları yapılabilecektir.

7 Literatür Araştırması Stathopoulos ve Saathoff [1], alçak binaların çok-kademeli eğimli çatıların dizaynı için uygun yerel basınç katsayılarının belirlenmesi üzerinde çalışmışlardır. Özellikle 4:12 ve 12:12 eğimli çatılar üzerinde ölçülen yerel basınç katsayıları üzerinde kademe miktarı ve çatı eğiminin etkisini araştırmak için rüzgar tünelinde test etmişlerdir.

8 S.Reichrath ve T.W. Davies [13] çok kademeli Venlo-tip sera çatı üzerinde basınç dağılımlarının doğruluğunu test etmek amacıyla CFDde simülasyonu çalışması yapmışlardır. CFD yöntemi ile bulunan sonuçlar deneysel verilerle oldukça uygunluk göstermiş ve gelecekte sera simülasyonları için oldukça güven vermiştir.

9 M.Tutar ve G. Oğuz [27,28],çalışmalarında, iki bina konfigürasyonu etrafındaki türbülanslı sınır katmanı akımı Büyük eddy Simülasyonu (BES) metodu yardımıyla çözümlemişlerdir. Tek bina konfigürasyonu için test edilen zaman ve/veya yer ortalamalı Navier-Stokes denklemlerine dayalı türbülans modelleri içerisinde RNG alt-ağ ölçekli BES metodu daya iyi performans veren türbülans modeli olarak bu çalışma için seçilmiştir. Zaman bağımlı simülasyonlar sonlu hacim yöntemine dayalı olarak gerçekleştirilmiştir. Deneysel veri ile karşılaştırılan sonuçlar BES metodunun ilgili akımı çözümlemede oldukça başarılı olduğunu göstermişlerdir.

10 Çatı Şekilleri Çatılar, genellikle aşağıdaki şekillerde yapılır: a)Sundurma çatı b)Beşik çatı c) Kırma çatı d) Mansard çatı e) Kule çatı f) Fenerli çatı g) Set çatı h) Kombine çatı ( a ) (b) (c) (d) ( e ) (f) (g) (h)

11 DENEYSEL YÖNTEM VE SONUÇLAR Deneyler 32x32 cm kesitli ve plexiglas dan yapılmış test bölgesine sahip, ses altı-düşük hızlı, açık çevrimli, kapalı deney odalı ve emiş tip olan hava tünelinde gerçekleştirilmiştir. Tünelin şematik resmi aşağıda gösterilmiştir. Hava tünelinde, 5.5 kWlık bir fan ile yapay rüzgar oluşturulmuş ve fanın devir ayarı, hız kontrol ünitesiyle gerçekleştirilmiştir. Yapılan türbülans ölçümlerinde, ölçüm ekipmanı olarak kızgın tel anemometre cihazı kullanılmıştır.

12 1- Giriş ağzı, 2- Dinlenme Odası, 3- Kollektör, 4- Test Bölgesi, 5- Difüzör Adaptörü 6-Difüzör,7- Çıkış dinlenme Odası, 8- Fan Bağlantısı, 9- Fan Kabini, 10- Fan, 11- Tünel Şasesi, 12- Tünel Taşıyıcı Tekeri, 13- Hız Kontrol Ünitesi, 14- Pitot tüp, 15- Manometre, 16- Sıcaklık probu, 17- Bilgisayar, 18- Kızgın Tel Anemometre Ünitesi, 19- Osiloskop, 20- Masa, 21-Çatı Modeli, 22- Fark Basınç sensörü 23-Veri aktarma Ünitesi 24- Güç Ölçer 25-Veri aktarma bağlantısı

13 Rüzgar Basınç Ölçümleri Her durumda basınç ölçümleri yapının kenarından merkezine doğru tekrarlanarak elde edilir. Yapının yüzeyine 50 adet tapa ve bu tapalara 1.5 mm iç çapında 600 mm uzunluğunda hortumlar bağlanmıştır. Burada kullanılan hortumlar T.Stathopoulos ve P. Saathof [24] kullandıklarıyla benzerlik göstermektedirler. Çatı üzerine gelen rüzgar yükleri ilk olarak ölçme aralığı 0-10 mbar olan ASHCROFT marka RXLDP model fark basınç sensörleri tarafından analog sinyallere daha sonra veri toplama kartı ile sayısal hale dönüştürüldükten sonra yazılım sayesinde bilgisayarda basınç değerleri okunur.

14 ASHCROFT marka RXLDP model fark basınç sensörlerinin özellikleri Ölçüm aralığı: 0-10 mbar Ölçüm hassasiyeti %1 Veri Toplama Kartının Özellikler: 100 kHz örnekleme frekansı

15 Çatı modelinin boyutları ve model üzerindeki ölçüm noktalarının gösterilmesi

16 Ölçülen verilerin hesaplama metodu Boyutsuz bir katsayı olan Basınç katsayısı (Cp) aşağıdaki gibi tanımlanır [14] : Burada P, çatı modelinin herhangi herhangi bir noktasındaki statik basıncıdır. P o test kesitinde üniform akımdaki statik basınçtır, havanın yoğunluğu ve V, üniform akımdaki hızdır. Ortalama rüzgar basıncı (P ort ) ve ortalama rüzgar basınç katsayısı (Cp ort ) aşağıdaki gibi hesaplanır.

17 Burada, P ort ortalama rüzgar basıncı,dA i i noktası etrafındaki yüzey alanı, c pi i noktasındaki yersel basınç katsayısıdır. Deneylerde rüzgar hızı 20 m/s olarak alınmıştır

18 Yersel Basınç Katsayıları için Deneysel Ölçümler:

19 Şekil α=10 o eğimli çatının Φ=30 ve 60 o rüzgar geliş açısında deneysel olarak elde edilen rüzgar basınç katsayıları

20 Şekil α=10 o eğimli çatının Φ=90 o rüzgar geliş açısında deneysel olarak elde edilen rüzgar basınç katsayıları

21 α=20 o eğimli çatının Φ=0 ve 30 o rüzgar geliş açısında deneysel olarak elde edilen rüzgar basınç katsayıları

22 α=20 o eğimli çatının Φ=60 ve 90 o rüzgar geliş açısında deneysel olarak elde edilen rüzgar basınç katsayıları

23 α=30 o eğimli çatının Φ=0 ve 30 o rüzgar geliş açısında deneysel olarak elde edilen rüzgar basınç katsayıları

24 α=30 o eğimli çatının Φ=60 ve 90 o rüzgar geliş açısında deneysel olarak elde edilen rüzgar basınç katsayıları

25 Deneysel olarak elde edilen grafiklere bakıldığında,10 o eğimli çatıda kritik emme basınç katsayıları 0 o ve 30 o rüzgar geliş açılarında x/S=0.1 ve x/S=0.5 de 60 o ve 90 o geliş açılarında x/S=0.5 de, 20 o ve 30 o eğimli çatılar için 0 o,30 o, 60 o ve 90 o geliş açılarında kritik basınç katsayıları x/S=0.5 de meydana gelmiştir.10 o,20 o ve 30 o eğimli çatılar için 90 o geliş açısında z/d=0.16, 0.33, 0.5 ve 0.66 oluşan emme basınç katsayıları diğer geliş açılarına nazaran daha düşük olmuştur.

26 10 o,20 o ve 30 o eğimli çatılar için 60 o ve 90 o rüzgar geliş açılarında en yüksek emme basınç katsayıları z/d=0.83 de meydana gelmiştir. 30 o eğimli çatıda 0 o,30 o ve 60 o rüzgar geliş açısında x/S=0~0.4 arasında pozitif basınç katsayıları oluşmuştur.

27 Deneysel Olarak Elde Edilen Ortalama Basınç Katsayıları

28 Ters eğimde oluşan ortalama basınçlar karşı eğime nazaran daha büyük ve emme şeklindedir. α =20 o eğimli çatıda Φ=0 o geliş açısında ortalama basınçlar sıfır değerine yaklaşmıştır. α =30 o eğimli çatıda Φ=0 o geliş açısında ortalama basınçlar basma şeklinde olup Φ=30 o,Φ=60 o ve Φ=90 o geliş açılarında emmeye dönüşmüştür.

29 Türbülans Yoğunluğu Ölçümleri Bu kısım, çeşitli çatı modellerinde değişik rüzgar açılarında çatı modelleri üzerinde meydana gelen türbülans yoğunluklarının deneysel olarak incelenmesi sonucu elde edilen verileri içerir.. Türbülans yoğunlukları z/d=0.5 de elde edilmiştir.

30 Tek Kanallı Kızgın Tel Anemometre Modülü Voltaj Çıkışı: 0-10 V Prob Direnç Ölçüm Hassasiyeti: % 0.1 Minyatür Prob Sensör Direnci: 3.5 ohm Max.Sensör Sıcaklığı: 300 o C V min =0.02 m/s V max =500 m/s

31 . α=10 o eğimli çatıda Φ=0 ve 30 o rüzgar geliş açısında çatı üzerindeki noktalardan test kesit alanının orta eksenine kadar olan mesafede ölçülen türbülans yoğunlukları

32 . α=10 o eğimli çatıda Φ=90 o rüzgar geliş açısında çatı üzerindeki noktalardan test kesit alanının orta eksenine kadar olan mesafede ölçülen türbülans yoğunlukları

33 α=20 o eğimli çatıda Φ=0 ve 30 o rüzgar geliş açısında çatı üzerindeki noktalardan test kesit alanının orta eksenine kadar olan mesafede ölçülen türbülans yoğunlukları

34 α=20 o eğimli çatıda Φ=60 ve 90 o rüzgar geliş açısında çatı üzerindeki noktalardan test kesit alanının orta eksenine kadar olan mesafede ölçülen türbülans yoğunlukları

35 α=30 o eğimli çatıda Φ=0 ve 30 o rüzgar geliş açısında çatı üzerindeki noktalardan test kesit alanının orta eksenine kadar olan mesafede ölçülen türbülans yoğunlukları

36 α=30 o eğimli çatıda Φ=90 o rüzgar geliş açısında çatı üzerindeki noktalardan test kesit alanının orta eksenine kadar olan mesafede ölçülen türbülans yoğunlukları

37 Şekil da deneysel olarak elde edilen sonuçlara bakıldığında α=10 o eğimli çatıda Φ=0 o rüzgar geliş açısında A yolu (x/S=0, y/H=0.23~0.5) boyunca en düşük türbülans yoğunlukları oluşmuş olup Φ=30 o geliş açısında A yolu (x/S=0, y/H=0.23~0.5) ve B yolu (x/S=0.2, y/H=0.25~0.5) boyunca Φ=60 o rüzgar geliş açısında D yolu (x/S=0.75, y/H=0.25~0.5) ve E yolu (x/S=1, y/H=0.23~0.5 ) boyunca en yüksek türbülans yoğunlukları meydana gelmiştir. α=20 o ve α=30 o eğimli çatılarda Φ=0 o,Φ=30 o ve Φ=60 o geliş açılarında en yüksek türbülans yoğunlukları D yolu (x/S=0.75, y/H=0.25~0.5)ve E yolu (x/S=1, y/H=0.23~0.4 ) boyunca meydana gelmiştir.

38 NÜMERİK METOD VE HESAPLAMALAR Yüksek kapasiteli bilgisayarların gelişmesiyle 1990lardan beri CFD nin kullanılması yaygınlaşmıştır. CFD nin bu kadar çok kullanılmasının sebebi ucuz oluşu ve nispeten hassas simülasyon sonuçları vermesidir. Normalde veri elde etmek için, deneysel ölçüm ve nümerik simülasyon olarak 2 tür yaklaşım vardır. Deneysel sonuçlar tam ve güvenilirdir, fakat pahalı ve fazla zaman alan bir yöntemdir.

39 CFD ekstra bir masrafa gerek duyulmaksızın birçok şartlar altında, büyük ve değişik geometrilerde sonuçlar üretebilmektedir. Zero-Equation Türbülans Modeli Zero-equation model en basit türbülans modeldir. Bu model türbülent viskoziteyi ifade etmek için tek bir cebirsel ifade kullanır.

40 μ t = 0,03874.ρ.V.l (4.1) l = Uzunluk faktörü V = Yersel Ortalama hız ρ = Hava yoğunluğu Uzunluk faktörü ( l ), katı yüzeye en yakın mesafeden olan uzaklık. 0,03874 farklı iç hava akışları için uygun deneysel bir sabittir Navier-Stokes Denklemi Sıkıştırılamaz, kararlı bir akış için Süreklilik ve X yönündeki momentum denklemleri şu şekildedir.

41 AĞ SAYISI VE TÜRBÜLANS MODELİ ETKİSİ Ağ TürüMax.Nod sayısıMax. Eleman Sayısı Ortalama Bağıl Hata Oranı % A ,18 B ,46 C ,45 D ,32 E ,22

42 Ağ sayısının etkisi 20 o eğimli çatıda 0 o rüzgar geliş açısında test edilmiştir. Grafikte görüldüğü gibi hassas ağ yapma (E), kaba ağ (A)ya oranla deneysel sonuçlara yakın sonuç vermesine rağmen belli değerden sonra ağ sayısını artırması daha fazla sapmalara neden olmaktadır

43 Türbülans modelinin etkisi de 20 o eğimli çatıda 0 o rüzgar geliş açısında test edilmiştir. Üstteki grafikte görüldüğü gibi 6 adet türbülans modeli Flotran analizde test edilmiştir. Çıkan sonuçlara bakıldığında Zero- equation türbülans modeli diğer türbülans modellere nazaran deneysel değerlere en yakın sonucu vermiştir.

44 HESAPLAMA UZAYI ÖZELLİKLERİ VE SINIR ŞARTLARI 20 o çatı için 0 o geliş açısında rüzgar yüklerini hesaplamak için tasarlanan hesaplama uzayının geometrik özellikleri (a) ve (b) üç boyutlu görünüm (c) ön kesit görünümü

45 Sınır Şartları Nümerik hesaplama için aşağıdaki sınır şartları kullanılmıştır. 1. Bu çalışmada hava akımı atmosferik sınır tabakası akımı olduğundan tamamen türbülanslı bir karakteristiğe sahiptir ve akımın bu özelliklerini belirtmek amacıyla girişte türbülans sınır şartlarının oluşturulması gerekmektedir.Türbülans modeli olarak Zero-equation modeli kullanılmıştır. 2. Çıkışta serbest çıkış akımı sınır şartları : Çıkış düzlemine normal açıda olan tüm akım değişkenlerinin difüzyon akılarının sıfır değerinde olduğu kabul edilmiştir.Diğer yandan çıkış hızı ve basıncı ise akımın tam gelişmiş akım olduğu kabul edilerek ele alınmıştır.

46 3. Hesaplama uzayının yan ve üst yüzeylerinde serbest-kayma (free-slip) sınır şartları: Normal hız bileşenleri ve tüm hız bileşenlerinin normal gradiyentlerinin sıfır değeri aldıkları kabul edilmiştir.

47 Basınç Katsayıları için Nümerik Hesaplamalar Bu kısım, çeşitli çatı modellerinde değişik rüzgar açılarında çatı modelleri üzerinde meydana gelen rüzgar basınç katsayılarının, nümerik olarak incelenmesi sonucu elde edilen verileri içerir. Hesaplanan rüzgar basınçları denklem 3.1 de yerine konularak rüzgar basınç katsayıları hesaplanmıştır. Şekillere bakıldığında kritik basınçların nispeten köşe yüzeylerde ve çatı sırtı bölgesinde meydana geldiği görülmektedir.

48 10 o eğimli çatının 0 ve 30 o rüzgar geliş açısında nümerik olarak elde edilen rüzgar basınç katsayıları

49 10 o eğimli çatının 60 ve 90 o rüzgar geliş açısında nümerik olarak elde edilen rüzgar basınç katsayıları

50 . 20 o eğimli çatının 0 ve 30 o rüzgar geliş açısında nümerik olarak elde edilen rüzgar basınç katsayıları

51 20 o eğimli çatının 90 o rüzgar geliş açısında nümerik olarak elde edilen rüzgar basınç katsayıları

52 30 o eğimli çatının 0 ve 30 o rüzgar geliş açısında nümerik olarak elde edilen rüzgar basınç katsayıları

53 30 o eğimli çatının 60 ve 90 o rüzgar geliş açısında nümerik olarak elde edilen rüzgar basınç katsayıları

54 TS498 E ÖNERİ Türk Standartları Enstitüsü tarafından Kasım 1997de yayımlanan TS 498 (Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri)de beşik tipi çatılarda 0 o rüzgar geliş açısı için ortalama basınçlar için formüller sunulmuştur. Bu bölümde nümerik sonuçlardan yola çıkarak TS498de ortalama basınçlar için verilen denklemin genişletilmesi yönünde öneriler sunulmuştur. İlk olarak Tablo de 10 o eğimli çatı için Φ=0 rüzgar geliş açısında nümerik elde edilen sonuçlar TS 498 Tablo5 de sunulan değerlerle karşılaştırılmıştır.

55 Tablo. 10 o eğimli çatı için Φ=0 o de karşı eğimde TSE 498 Tablo 5' de verilen değerlerle nümerik olarak elde edilen sonuçların karşılaştırılması Zeminden Yüseklik(m) TS 498 Tablo 5'de verilen Rüzgar hızı V (m/s) TS 498 Tablo 5'de verilen Emme, q (Pa) TS 498 Tablo 5'de verilen Karşı Eğimdeki Rüzgar Basıncı (Pa) (1,2.Sinα-0,4).q Karşı eğimde Nümerik elde edilen Ortalama Rüzgar Basıncı (Pa) % Fark ,81-87,019, ,29-137,989, ,78 12,01 > ,1-224,929,71

56 Tabloya bakıldığında nümerik olarak bulduğumuz değerler TS 498 Tablo 5 de sunulan değerlerle uygunluk göstermektedir. Buradan hareketle, aşağıda tablo da 10 o eğimli çatı için değişik hızlar, ve rüzgar açıları için nümerik olarak hesaplanan ortalama basınçlar sunulmuştur.

57 Zeminden Yükseklik (m) TS 498 Tablo5'de verilen Rüzgar hızı V (m/s) TS 498 Tablo 5'de verilen Emme, q (Pa) TS 498 Tablo 5'de verilen Ters Eğimdeki Rüzgar Basıncı (Pa) 0,4.q Ters eğimde Nümerik elde edilen Ortalama Rüzgar Basıncı (Pa) % Fark ,878, ,1112, ,4012,77 > ,3013,66 Tablo. 10 o eğimli çatı için Φ=0 o de ters eğimde TSE 498 Tablo 5' de verilen değerlerle nümerik olarak elde edilen sonuçların karşılaştırılması

58 Rüzgar Açısı Φ α=1 0 o Hızlara göre Ortalama Basınçlar (Pa) Karşı Eğim (E)Ters Eğim (F) V=28V=36V=42V=46V=28V=36V=42V=46 Φ=0 o -87,01-128, ,26-215, ,87-372, , ,121 Φ=30 o -150,43-246, , , ,55-416, , ,394 Φ=60 o -134,42-220, , , ,87-387, , ,23 Φ=90 o -29,35-36, , , ,88-39,41-62,62-82,69 α=10 o eğimli çatıda farklı hız ve yönler için nümerik elde edilen ortalama basınçlar

59 Bu tablodaki değerlerden yola çıkarak TS 498de P=(1,2*Sinα – 0,4)*q sunulan formül farklı eğim ve rüzgar geliş açıları için yetersiz kalmış olup bu formülü aşağıdaki Tablodaki gibi genişletebiliriz.

60

61 SONUÇLAR VE TARTIŞAMA 1) 10 o,20 o ve 30 o eğimli çatılar için 0 o,30 o, 60 o ve 90 o geliş açılarında, nümerik ve deneysel olarak elde edilen C p (basınç katsayısı) dağılımlarına bakıldığında deneysel ölçümler ile nümerik hesaplamalar arasında basınç katsayısı (C p ) değerleri açısından genelde uyumlu sonuçlar elde edilmesine rağmen bazı noktalarda uyumsuzluk görülmüştür. Bu sapmalar daha çok çatı köşe noktalarında ve sırt yüzeylerde meydana gelmiştir. Bu farklılıkların sebebi olarak ; grid yapısı, ağ boyutu, örnek uzayının boyutu, seçilen türbülans modelin yetersizliği ve bu yüzeylerde deneysel olarak hassas bir ölçüm yapılamaması olarak açıklanabilir.

62 Ayrıca hava akımının doğru olarak modellenmesi ve basınç değerlerinin hesaplanmasında CFD nin yetersiz kalması bu farklılıkların sebebi olarak açıklanabilir. Genel olarak sonuçlar göz önüne alındığında bu konuda deneysel olarak ölçümleri yapılamayacak çatı modelleri için CFD analizi yapılarak güvenilir sonuç ve yorumlamalar yapılabileceğini göstermektedir

63 2) Nümerik hesaplamalarda ilk olarak ağ sayısının etkisi araştırılmıştır. Şekil 4.1 de görüldüğü gibi hassas ağ yapma, kaba ağa nazaran deneysel sonuçlara daha yakın sonuçlar vermiştir. 3) Nümerik hesaplamalarda daha sonra türbülans modelinin etkisi araştırılmıştır. Bunun için ANSYS-Flotran da 6 adet türbülans modeli (k-ε, RNG,Grimaji,Zero- equation,New k-ε, Shi-Zhu-Lumley) test edilmiştir. Testler neticesinde, Zero-equation türbülans modeli Şekil 4.2 de de görüldüğü gibi deneysel sonuçlara en yakın sonucu vermiştir. Bundan dolayı burada yapılan tüm nümerik hesaplamalarda Zero-equation türbülans modeli kullanılmıştır.

64 4 ) 10 o eğimli çatıda kritik emme basınç katsayıları 0 o ve 30 o rüzgar geliş açılarında x/S=0.1 ve x/S=0.5 de 60 o ve 90 o geliş açılarında x/S=0.5 de, 20 o ve 30 o eğimli çatılar için 0 o,30 o, 60 o ve 90 o geliş açılarında kritik basınç katsayıları x/S=0.5 de meydana gelmiştir. 5)10 o,20 o ve 30 o eğimli çatılar için 90 o geliş açısında z/d=0.16, 0.33, 0.5 ve 0.66 oluşan yersel basınç katsayıları diğer geliş açılarına nazaran daha düşük olmuştur. 6)10 o,20 o ve 30 o eğimli çatılar için 60 o ve 90 o rüzgar geliş açılarında en yüksek emme basınç katsayıları z/d=0.83 de meydana gelmiştir.

65 7)30 o eğimli çatıda 0 o,30 o ve 60 o rüzgar geliş açısında x/S=0~0.4 arasında pozitif basınç katsayıları oluşmuştur. 8)Karşı ve ters eğimde deneysel olarak elde edilen ortalama basınç katsayıları Şekil da gösterilmiş olup genelde uyumlu sonuçlar elde edilmiştir. a) Ters eğimde oluşan ortalama basınçlar karşı eğime nazaran daha büyük ve emme şeklindedir. b) α =20 o eğimli çatıda Φ=0 o geliş açısında ortalama basınçlar sıfır değerine yaklaşmıştır. c) α =30 o eğimli çatıda Φ=0 o geliş açısında ortalama basınçlar basma şeklinde olup Φ=30 o,Φ=60 o ve Φ=90 o geliş açılarında emmeye dönüşmüştür.

66 9) Deneysel ve nümerik olarak elde edilen ortalama basınç katsayıları Şekil da gösterilmiş olup genelde uyumlu sonuçlar elde edilmiştir. a) α=10 o eğimli çatı için z/d= de en düşük ortalama emme basınç katsayısı Φ=0 o de, en yüksek ortalama emme basınç katsayısı Φ=90 o de meydana gelmiştir. Z/d=0.33, 0.5, 0.66 ve 0.83 de en düşük emme basınç katsayısı Φ=90 o de, en yüksek emme basınç katsayısı Φ=60 o de meydana gelmiştir. b) α=20 o eğimli çatı için z/d=0.1667, 0.33, 0.5 ve 0.66 da en yüksek ortalama emme basınç katsayısı Φ=90 o de, en düşük ortalama emme basınç katsayısı Φ=60 o de meydana gelmiştir. z/d=0.83 de en yüksek ortalama emme basınç katsayısı Φ=60 o de, en düşük ortalama emme basınç katsayısı Φ=90 o de meydana gelmiştir.

67 c) α=30 o eğimli çatı için z/d= de en düşük ortalama emme basınç katsayısı Φ=0 o de, en yüksek ortalama emme basınç katsayısı Φ=30 o de meydana gelmiştir. z/d=0.33, 0.5 ve 0.66 da en yüksek ortalama emme basınç katsayısı Φ=30 o de en düşük ortalama emme basınç katsayısı Φ=90 o de meydana gelmiştir. z/d=0.83 de en yüksek ortalama emme basınç katsayısı Φ=60 o de, en düşük ortalama emme basınç katsayısı Φ=90 o de meydana gelmiştir. 10) α=10 o, α=20 o ve α=30 o eğimli çatılar için Φ=0 o, Φ=30 o, Φ=60 o ve Φ=90 o geliş açılarında çatı üzerindeki belirli noktalardan tünel test kesitinin orta eksenine kadar olan mesafede türbülans yoğunlukları ölçülmüş olup şekil de gösterilmiştir.

68 a) α=10 o eğimli çatıda Φ=0 o rüzgar geliş açısında A yolu (x/S=0, y/H=0.23~0.5) boyunca en düşük türbülans yoğunlukları oluşmuş olup Φ=30 o geliş açısında A yolu (x/S=0, y/H=0.23~0.5) ve B yolu (x/S=0.2, y/H=0.25~0.5) boyunca Φ=60 o rüzgar geliş açısında D yolu (x/S=0.75, y/H=0.25~0.5) ve E yolu (x/S=1, y/H=0.23~0.5 ) boyunca en yüksek türbülans yoğunlukları meydana gelmiştir b) α=20 o ve α=30 o eğimli çatılarda Φ=0 o,Φ=30 o ve Φ=60 o geliş açılarında en yüksek türbülans yoğunlukları D yolu (x/S=0.75, y/H=0.25~0.5)ve E yolu (x/S=1, y/H=0.23~0.4 ) boyunca meydana gelmiştir.

69 11) α=10 o eğimli çatı için nümerik olarak bulduğumuz değerler TS 498 Tablo 5 de sunulan değerlerle uygunluk göstermektedir. Buradan hareketle, aşağıda tablo de farklı eğimler, rüzgar açıları ve farklı hızlar için nümerik olarak hesaplanan ortalama basınçlar sunulmuştur. Bu tablolardaki değerlerden yola çıkarak TS 498de P=(1,2*Sinα- 0,4)*q sunulan formül farklı eğim ve rüzgar geliş açıları için yetersiz kalmış olup bu formülü Tablo5.10daki gibi genişletebiliriz.

70 12) Tablo 5.6de sunulan ortalama basınç değerlerine bakıldığında bütün çatılar için karşı eğimde Φ=0 o Φ=30 o ve Φ=60 o rüzgar geliş açılarında çatı eğimi arttıkça ortalama basınçlar emmeden basmaya yönelmiştir. Ters eğimde oluşan ortalama emme basınçları karşı eğime nazaran daha büyük olmuştur ve en düşük emme basınçları Φ=90 o rüzgar geliş açısında meydana gelmiştir. 13)Bu şekilde, deneysel ölçümü yapılamayan farklı çatı modelleri ve değişik rüzgar hız ve yönleri için de, oluşturulan nümerik model yardımıyla bu farklı çatılar üzerindeki hız alanları, basınç dağılımları, rüzgar yükü değişimleri gibi sonuçlar deneysel ölçüme gerek duyulmadan bulunabilecektir.

71 Böylece ülkemizde kullanılan çeşitli tipteki çatılar üzerinde meydana gelen çatı çökmeleri, çatı uçmaları gibi büyük maddi kayıplara sebep olan olaylar daha gerçekçi bir şekilde analiz edilebilecek, bu tip olayların önlenebilmesi için çatılar üzerinde yapılması gereken değişiklikler ele alınarak bu tip kazaların önüne geçebilmek için alınması gereken tedbirler ortaya konulacaktır.


"ÇEŞİTLİ ÇATI TİPLERİNDE RÜZGAR YÜKLERİNİN DENEYSEL VE NÜMERİK OLARAK İNCELENMESİ Mak.Y.Müh. Mustafa Atmaca Haziran 2003 - Sakarya." indir ppt

Benzer bir sunumlar


Google Reklamları