Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

ZAMAN SERİLERİ EKONOMETRİSİ I : DURAĞANLIK, BİRİM KÖKLER.

Benzer bir sunumlar


... konulu sunumlar: "ZAMAN SERİLERİ EKONOMETRİSİ I : DURAĞANLIK, BİRİM KÖKLER."— Sunum transkripti:

1 ZAMAN SERİLERİ EKONOMETRİSİ I : DURAĞANLIK, BİRİM KÖKLER

2 ZAMAN SERİLERİ VE TEMEL KAVRAMLAR Model tahminleri birtakım amaçlar için yapılır:  Bu amaçlar, yapısal analiz,  Geleceği tahmin etme (öngörü)d i r.  Yapısal analiz, iktisadi teorilerin test edilmesi,  Geleceği tahmin etme(Öngörü ) ise, tahmin edilen modele dayanarak, bağımlı değişkenlerin ileride alacağı değerlerin belirlenmesidir.

3 ZAMAN SERİLERİ VE TEMEL KAVRAMLAR Zaman serileri random (tesadüfi) değişkenlerle yani stokastik (olasılık kurallarına bağlı) değişkenlerle çalışır. Bir zaman serisinin deterministik ya da stokastik özelliklerinin incelenerek dikkate alınması önemlidir.  Deterministik özellikler; sabit katsayı, trend ve mevsimselliğin varlığını ortaya koyarken,

4  Stokastik özellik; değişkenin durağanlığı (stationary) ile ilgilidir. Bir zaman serisinin durağan olması, zaman içinde belirli bir değere doğru yaklaşması, daha açık bir ifadeyle, sabit bir ortalama, sabit varyans ve gecikme seviyesine bağlı kovaryansa sahip olmasıdır.

5 •Durağanlık; Zaman serisi verilerinin belirli bir zaman sürecinde sürekli artma veya azalmanın olmadığı, verilerin zaman boyunca bir yatay eksen boyunca saçılım gösterdiği biçimde tanımlanır. •Genel bir tanımlama ile, sabit ortalama, sabit varyans ve seriye ait iki değer arasındaki farkın zamana değil, yalnızca iki zaman değeri arasındaki farka bağlı olması şeklinde ifade edilir.

6 •Zaman serisi ile ilgili yapılan çalışmalar serinin DURAĞAN olduğunu varsayar. •Bir zaman serisinin, başka bir zaman serisine göre regresyonunu hesaplarken, ikisi arasında anlamlı bir ilişki olmasa bile çoğunlukla yüksek bir R 2 bulunur. Bu durum SAHTE REGRESYON sorununa yol açmaktadır.

7 • Bir zaman serisinde durağanlık kavramı farklı şekilde ortaya çıkabilir: •Ortalama Durağanlık •Varyans Durağanlık •Fark Durağanlık •Trend Durağanlık

8 ÖRNEK-1: ABD,1970/I – 1991/IV Dönemine İlişkin Makro iktisat Verileri •GSYİÜ = Gayrisafi Yurtiçi Üretim (GDP) •KHG = Kişisel Harcanabilir Gelir (PDI) •KTH = Kişisel Tüketim Harcaması (PCE) •Karlar (profit) •Kar Payı Dağıtımları (dividends)

9

10

11

12 •Bu zaman serileri aslında durağan olmayan zaman serilerine örnektir. •Her zaman serisinin bir olasılıklı ya da rassal süreç ile türediği düşünülebilir. •Veri kümesi ise bu olasılıklı süreçin bir dışavurumudur. •Zaman serileri çalışmalarında ilgi gösterilen ve incelenen bir olasılıklı süreç türü, durağan olasılıklı süreçtir.

13 Durağanlık Kavramı E(Y t ) = µ(tüm t’ ler için) Var(Y t ) = E(Y t -µ) 2 =σ 2 (tüm t’ ler için) Cov(Y t,Y t+k )= γ k sabit(tüm t’ ler için tüm k≠0 için) Eğer bir zaman serisinin ortalaması, varyansı ve kovaryansı zaman boyunca sabit kalıyorsa, serinin durağan olduğu söylenebilir. Yukarıdaki tanımlardan herhangi birini sağlamayan bir zaman serisinin durağan olmadığını söyleyebiliriz.

14 Durağan Olmama Durumu XtXt XtXt tt

15 t XtXt

16

17

18 Durağanlığın Gerekliliği Bir regresyon denklemindeki açıklayıcı değişkenlerden her hangi birisi yukarıda tanımlandığı anlamda durağan olmadığında regresyon teorisi bozulur. Klasik regresyon modeli durağan değişkenler arasındaki ilişkilerde kullanılmak için keşfedilmiştir. Bu nedenle durağan olmayan serilere uygulanmamalıdır.

19 Zaman Serilerinin Durağanlığının Araştırılması •Serilerin zaman yolu grafiğinde ve onun korelogramında otokorelasyon ve kısmi otokorelasyon katsayıları üzerinde yapılan subjektif yargılara dayanmak, • Birim köklerin varlığını için istatistiki testlerin kullanılması. Bir zaman serisinin durağan olup olmadığının ortaya çıkarılması için iki yol vardır:

20 Otokorelasyon Fonksiyonu (ACF)  Bir değişken zaman boyunca ölçüldüğünde serideki verilerin bir ya da daha fazla gecikmeli dönemlerden etkilenerek çok sık korelasyonlu oldukları gözlenir.  Herhangi iki değişkenin değerleri arasında birlikte değişimin ölçüsü olarak kovaryans ve korelasyon katsayılarının hesaplama mantığına dayanan, bir zaman serisi gözlemlerinin gecikmeli değerleri arasında da kovaryans ve korelasyon katsayısı hesaplanabilir. Tek bir zaman serisi değişkeninin gecikmeli değerleri arasında birlikte değişimin bir ölçüsü otokovaryans ve otokorelasyon (ACF) olarak adlandırılır.

21 (Otokorelasyon Fonksiyonu (ACF) •Basit durağanlık sınaması, ACF’na dayanır. Gecikmesi k iken ρ k ile gösterilen ACF şöyle tanımlanır: •k=0 iken ρ k =1 olur, Neden? •ρ k ’nın k’ye göre çizilmesiyle anakütle korelogramı elde edilir.

22 •Örneklem ACF • Örneklem Ortak Varyansı •Örneklem Varyansı

23 ABD, 1970/I – 1991-IV arası döneme ilişkin GSYİÜ serisine ilişkin korelogram

24 •Herhangi bir nin istatistik bakımından anlamlılığı, standart hatasıyla belirlenir. •Bartlett, bir zaman serisi bütünüyle rassal ise (beyaz gürültü) örneklem Ootokorelasyon katsayılarının sıfır ortalama ve 1/n varyansla yaklaşık normal dağıldığını söyler. • n=88, varyans 1/88 ve standart sapma •  k nın %95 güven aralığı OTOKORELASYON KATSAYISININ İSTATİSTİKSEL ANLAMLILIĞININ TESTİ

25 Tahmin edilen  k ( , ) aralığına düşerse gerçek  k ’nın sıfır olduğunu söyleyen hipotezi reddetmeyiz.(H 0 seri durağan) Dışına düşerse gerçek  k ’nın sıfır olduğunu söyleyen hipotezi reddederiz. %95 güven aralığı şekilde (korelogram) iki kesiksiz çizgiyle gösterilmiştir.

26 Hipotezi bu aralığa dayanılarak test edilir.

27 Q istatistiği •Bütün ρ k otokorelasyon katsayılarının eşanlı olarak sıfır olduğunun test edilmesinde kullanılır.Box ve Pierce tarafından geliştirilmiştir. •Q istatistiği asimptotik olarak m serbestlik derecesi ile Ki-kare dağılır. •n:örneklem büyüklüğü (örnekte 88 dir) •m:gecikme uzunluğu (örnekte 25 dir)

28 Q test istatistiği=  =0.05 m=25 gecikme için ki – kare tablo değeri= dir. H 0 red dir. Yani seri durağan değildir.

29 •Q istatistiğinin bir başka biçimi Ljung-Box(LB) istatistiğidir : 25 gecikme için GSYİÜ serisine ait istatistikler : Q=793 ve LB= 891 olarak bulunmuştur Bu her iki istatistik değeri ki-kare değerinden oldukça büyüktür. Böylece H 0 hipotezi reddedilir, GSYİÜ zaman serisi durağan değildir.

30 DURAĞANLIĞIN BİRİM KÖKLE SINANMASI Dickey ve Fuller Birim Kök Testi Basit bir seride birim kökün varlığını araştıran sistematik test Dickey ve Fuller tarafından ortaya konan bir testtir. Sürecinde birim kökün varlığı araştırıldığında hipotez aşağıdaki gibi oluşturulur.

31 u t : ortalaması sıfır, varyansı değişmeyen, ardışık bağımlı olmayan, olasılıklı hata terimidir. Bu hata terimi “beyaz gürültü hata terimi” olarak anılmaktadır.  İstatistiğinin eşik değerleri Dickey – Fuller tarafından belirlenmiştir. Eğer hesaplanan-t değeri, 0.01, 0.05 ve 0.10 kritik-t değerlerinden daha negatifse H 0 reddedilir ve serinin durağan olduğuna karar verilir.

32 Eşitliğin her iki tarafı Y t-1 den çıkarılırsa eşitlik çoğunlukla aşağıdaki biçimde de yazılabilir:

33 1. Pür Rassal Yürüyüş Modeli: Bu model trendin ve sabitin yer almadığı modeldir. Dickey-Fuller birim kök sınaması için üç model kullanılır. şeklindeki hipotez test edilir. Bu modellerde sabitin ve deterministik trendin etkisinin olmadığı varsayılır.

34 2. Sabitin Yer Aldığı Rassal Yürüyüş Modeli: M odelde sabit yer almaktadır. şeklindeki hipotezler test edilir. Bu zaman serilerinde deterministik trendin etkisinin olmadığı varsayılır.

35 3. Trend ve Sabitin Yer Aldığı Rassal Yürüyüş Modeli: Eşitliğin sağ tarafında sabit ve deterministik trend birlikte yar almaktadır. Yani model tüm deterministik bileşenleri ve stokastik kısmı içermektedir. Seri hakkında fazla bir bilgi yoksa 3. modelden başlanarak ilgili kritik değerlerle hipotez sınanır ve 1.Eğer H 0 reddedilirse serinin trend durağan I(0) olduğuna karar verilir. 2. H 0 hipotezi kabul edilirse birim kökün varlığına karar verilir.

36 GDP(GSYİÜ) Zaman Serisi Durağan mı? H 0 :  =0 yani ρ=1 (Seri durağan değil birim kök var.) %1, %5 ve %10 için kritik değerler : , ,  kritik değerlerden daha negatif olmadığı için GSYİÜ birim kök taşır

37 GSYİÜ Serisinin İlk Farkları Durağan mı? %1 için kritik değer olduğundan ile karşılaştırıldığında (kritik değerden daha negatif olduğu için)H 0 red edilebilir. Yani GSYİÜ verilerinin ilk farkları birim kök taşımaz, durağandır

38

39 Trend Durağan Süreçler ve Farkı Durağan Süreçler Trend durağanlık: Zaman serilerinde durağan olmamanın bir sebebi de serinin bir deterministik trende sahip olmasıdır. Zaman serisi modelinde deterministik trend serinin durağan olmasını engellemektedir. •Bir zaman serisinde trend; tamamen tahminlenebiliyor ve zamana bağlı olarak değişmiyorsa bu tür trendlere deterministik trend; •Eğer tahminlenemiyor ise stokastik trend denir.

40 Trend durağan süreçtir. modelinde Durağan olmayan rassal yürüyüş(  3 =1) ve deterministik trendli bir modeldir. Durağan ve deterministik trendli bir modeldir.

41 Trend Çizgisi Trendin deterministik mi yoksa stokastik mi olduğunu anlamak için; bir sabit terim ve trend değişkeninin olmadığı modeli, sadece sabit terimli model ve son olarak da hem sabit hem de trend değişkenli olmak üzere üç model kurularak katsayı işaretleri incelenir.

42 Δ GDPt = GDPt−1 (1) t = (5.7980) Δ GDPt = − GDPt−1 (2) t = (1.1576) (−0.2191) Δ GDPt = t − GDPt−1 (3) t = (1.8389) (1.6109) (−1.6252) 1.model için Kritik değerler %1, %5,ve %10 için τ değerleri −2.5897, −1.9439, ve −1.6177, 2.model için −3.5064, −2.8947, ve − model için −4.0661, −3.4614, ve − dir. Seri durağan değildir. Seri durağan değildir. Birim kök vardır. Trend katsayısı istatistiksel olarak anlamlı değil o zaman deterministik trend yok. Birim kök vardır. Seri durağan değildir. Eğer H 0 hipotezi reddedilseydi serinin trend durağan olduğuna karar verilecekti.

43 •Eğer, bir zaman serisinin birinci farkları durağan ise başlangıç (rassal yürüyüş) serisi 1.dereceden bütünleşiktir, I(1) •Eğer, durağan bir seriye ulaşmadan önce ilk serinin iki kez farkı alınıyorsa, ilk seri 2.dereceden bütünleşiktir, I(2) •Eğer bir zaman serisinin d kez farkının alınması gerekiyorsa, o seri d’inci dereceden bütünleşik ya da I(d)’dir. Bütünleşik Zaman Serileri

44 ÖRNEK: 1991: : 02 dönemine ilişkin üçer aylık toptan eşya fiyat indeksi serisinin durağan olup olmadığını birim kök testi ile araştırınız.

45 Serinin logaritmasının alınması ile serinin değerleri arasındaki farklar azalacağından kısmen serinin durağanlaşmasını sağlayacaktır. O yüzden TEFE değişkenin logaritması alınarak işleme başlayabiliriz. Grafiksel analiz Grafiksel görünüm ilk başta serinin ele alınan dönem içinde ortalamasının sabit olmadığı izlemini vermektedir.

46 Serinin Otokorelasyon Katsayılarının İncelenmesi(ACF)

47 Otokorelasyon katsayıları incelendiğinde yaklaşık 15. gecikmeye kadar %95 güven düzeyinde otokorelasyon olmadığını söyleyen kabul bölgesinin dışına çıktığı dolayısıyla seride otokorelasyon görünümünün olduğunu göstermektedir. Birim Kök Testi:

48 H 0 kabul. Seri durağan değildir. Birim kök vardır ADF Test Statistic % Critical Value* % Critical Value % Critical Value *MacKinnon critical values for rejection of hypothesis of a unit root. Augmented Dickey-Fuller Test Equation Dependent Variable: D(LNTEFE) Method: Least Squares Sample(adjusted): 1991:2 2004:2 Included observations: 53 after adjusting endpoints VariableCoefficientStd. Errort-StatisticProb. LNTEFE(-1) R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) Trendli ve Sabit terimli model

49 ADF Test Statistic % Critical Value* % Critical Value % Critical Value *MacKinnon critical values for rejection of hypothesis of a unit root. Augmented Dickey-Fuller Test Equation Dependent Variable: D(LNTEFE) Method: Least Squares Sample(adjusted): 1991:2 2004:2 Included observations: 53 after adjusting endpoints VariableCoefficientStd. Errort-StatisticProb. LNTEFE(-1) C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) H 0 kabul. Seri durağan değildir. Birim kök vardır. Sabit terimli model

50 ADF Test Statistic % Critical Value* % Critical Value % Critical Value *MacKinnon critical values for rejection of hypothesis of a unit root. Augmented Dickey-Fuller Test Equation Dependent Variable: D(LNTEFE) Method: Least Squares Sample(adjusted): 1991:2 2004:2 Included observations: 53 after adjusting endpoints VariableCoefficientStd. Errort-StatisticProb. LNTEFE(-1) R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood Durbin-Watson stat Sabit terimsiz model H 0 kabul. Seri durağan değildir.

51 Fark durağanlık için

52 Null Hypothesis: LNTEFE has a unit root Exogenous: Constant, Linear Trend t-Statistic Prob.* Augmented Dickey-Fuller test statistic Test critical values:1% level % level % level *MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(LNTEFE) Method: Least Squares Sample (adjusted): 1991Q3 2004Q2 Included observations: 52 after adjustments VariableCoefficientStd. Errort-StatisticProb. LNTEFE(-1) D(LNTEFE(-1)) R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) Seride birim kök vardır

53 Sahte Korelasyon/Regresyon •E•Eğer denklemdeki hem bağımlı hem de bağımsız değişkenlerde trend baskınsa, kuvvetli bir şekilde anlamlı regresyon katsayıları elde etmek mümkündür. •M•Modelde yer alan trende sahip değişkenler birbirleriyle tamamen ilişkisiz olsalar dahi, R 2 (belirlilik katsayısı) yüksek değerlerle tahmin edilebilir. •B•Bu sonuçlar tamamen sahte (spurious)’dir.

54 •B•Bu duruma en iyi örnek Hendry(1980) tarafından verilmiştir. •Ş•Şöyleki: Yağış miktarı ile UK enflasyon oranı arasında bulunan kuvvetli sahte korelasyon ilişkisidir. •T•Trendin kuvvetine göre regresyon katsayılarının anlamlılığı artabilir. •T•Trende sahip değişkenler arasında bu tür nedensel ilişkiler bulunabilir. •V•Ve tabi ki bu tür ilişkilerde sahte korelasyon olduğu keşfedilecektir.

55 Sahte regresyonun açık göstergesi (Phillips-1986 tarafından teorik olarak ispatlanmıştır) çok düşük Durbin-Watson istatistiği ile kabul edilebilir R 2 istatistiğinin birlikte ortaya çıkmasıdır. Yani, DW< R 2

56 KHG = Kişisel Harcanabilir Gelir (PDI) KTH = Kişisel Tüketim Harcaması (PCE) Regresyonun sahte olduğu düşünülür…..

57 %1 için : %5 için : %10 için : ve %10 düzeyindeki tablo değerleriyle karşılaştırıldığında KTH ile KHG’nin her ikisi de birim köklüdür, yani ikisi de durağan değildir.(H 0 kabul) ÖDEV : ∆KTH t ve ∆KHG t durağandırlar.

58 •∆KTH t ve ∆KHG t durağan olduğuna göre bu değişkenlere göre oluşturulan regresyon modeli kullanılamaz mı? HAYIR….Çünkü ilk farklarını alırken, KTH ile KHG’nin orijinal düzeylerinde belirlenen uzun dönem ilişkisini yitirebiliriz.

59 KTH : PCE KHG : PDI Her iki seri rassal ilerler ama aralarında bir birliktelik vardır.

60 •Genel olarak, Y dizisi I(1), başka bir X dizisi de I(1) ise ve d aynı değerse bu iki dizi eşbütünleşik olabilir. •Eşbütünleşik iseler bu iki değişkenin düzey değerleri ile yapılan regresyon anlamlıdır. •Böylece uzun dönemli ilişki kaybolmamış olur. EŞBÜTÜNLEŞME

61 Eşbütünleşik regresyon Eşbütünleşim katsayıları KTH ile KHG’nin her ikisi de birim köklüdür, yani ikisi de durağan değildir.(I(1)) Dikkat ! Bu iki değişkenin doğrusal bileşimi durağan olabilir. u t ’nin I(0) ya da durağan olduğunu bulursak KTH ile KHG değişkenlerinin eşbütünleşik olduğunu söyleriz. Bu durumda bu değişkenler aynı dalga boyundadır. Söz konusu hata terimi KTH’nin kısa dönem davranışını uzun dönem davranışına bağlamak için kullanılabilir. Hata Düzeltme modelleri bu dengesizliği düzeltmektedir.

62 Granger Nedensellik Testi

63 Temel Kavramlar •İ•İktisatta sebep-sonuç (etki) ilişkisi veya nedensellik konusu önemli ve karmaşık bir konudur. •Ç•Çalışmaların başarısı değişkenler arasındaki nedenselliğin belirlenmesine dayanmaktadır.

64 •E•Ekonometrik modellerde, bir değişkenin diğer değişkenlerle bağımlılığı söz konusu olmaktadır. •Y•Y’nin X'lerle olan bağımlılığı •B•Bu bağımlılık, Y ile X'ler arasında mutlaka bir sebep-sonuç ilişkisi olduğu anlamına gelmez.

65 •P•Para Arzı(M) ve GSMH değişkenleri arasındaki ilişkiyi inceleyelim: •B•Bu değişkenlerden her biri diğerini (dağıtılmış) gecikmeli olarak etkiler. •M•M  GSMH •G•GSMH  M •M•M  GSMH ve GSMH  M

66 •İ•İki değişken arasında zamana bağlı gecikmeli ilişki varken, nedenselliğin yönünün (sebep ve sonuç ilişkisinin) istatistikî olarak belirlenmesi konusu ile karşı karşıyayız. •N•Nedensellik konusundaki ilk çalışma Granger(1969) tarafından yapılmıştır. •B•Bu nedenle Granger nedensellik testi adı ile anılmaktadır.

67 •G•Granger değişkenler arasındaki nedensellik testi zaman serisi verilerine dayanır. •T•Testte önce şu denklemler tahmin edilir: =Granger nedensellik testi modelleri

68 M nin GSMH yı tek tönlü etkilemesi ( M  GSMH )

69 GSMH nin M yi tek tönlü etkilemesi ( GSMH  M )

70 M  GSMH ve GSMH  M

71 •Granger Nedensellik Sınaması Aşamaları: 1.Cari GSMH’nın bütün gecikmeli GSMH değerlerine ve varsa başka değişkenlere göre regresyonu bulunur. Bu modelde M’nin gecikmeli değerleri modele dahil edilmez. Sınırlanmış hata kareler toplamı hesaplanır. 2.Aynı modele bu defa M terimleri dahil edilerek model tahminlenir ve bu sınırlanmamış modelin hata kareler toplamı bulunur.

72 •Granger Nedensellik Sınaması Aşamaları: 3. hipotezi oluşturulur. 4.m ve (n-k) sd ile F dağılımına uyan test istatistiği hesaplanır: m:Gecikmeli m terimleri sayısı k:sınırlanmamış regresyonda tahmin edilen katsayılarının sayısı 5.F>Ftab ise H 0 hipotezi reddedilir. Bu ise M’nin GSMH’nın nedeni olduğunu söylemektedir. H 0 :Nedenselliğin yönü geçersizdir. M  GSMH H 1 :Nedenselliğin yönü geçerlidir. M  GSMH

73 ABD 1960-I den 1980-IV GSMH ve M büyüme hızı arasındaki nedensellik : Nedenselliğin YönüF hes DeğeriF tab DeğeriKarar M  GSMH H O red GSMH  M H 0 kabul H 0 :Nedenselliğin yönü geçersizdir. M  GSMH H 1 :Nedenselliğin yönü geçerlidir.M  GSMH H 0 red. Nedenselliğin yönü geçerlidir.M  GSMH


"ZAMAN SERİLERİ EKONOMETRİSİ I : DURAĞANLIK, BİRİM KÖKLER." indir ppt

Benzer bir sunumlar


Google Reklamları