Sunuyu indir
Sunum yükleniyor. Lütfen bekleyiniz
YayınlayanAta Hoca Değiştirilmiş 9 yıl önce
2
Normal Dağılım EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. tahminleri için uygulanan testlerin geçerliliği u i ’nin normal dağılmasına bağlıdır. Çünkü u i normal dağılıyorsa, EKK b 1 ve b 2 ’nin tahmincileri de normal dağılır. Normal dağılmış değişkenleri olan bir doğrusal fonksiyonun kendisi de NORMAL DAĞILIR.
3
Normal Dağılım u i değerleri - + E(u i )=0
4
Uygunluk Testi 1.Aşama H 0 : u i ’ler normal dağılımlıdır H 1 : u i ’ler normal dağılımlı değildir 2.Aşama = ? 3.Aşama ,sd =? 4.Aşama hes > ,sd H 0 hipotezi reddedilebilir S.d.=? G:Gözlenen değer B:Beklenen değer
5
Uygunluk Testi E(u)= 0 %68 -- ++ +2 -2 %95.5 +3 -3 %99.7 0.34 0.14 0.02
6
Ortalamadan (-σ,+σ) kadar uzaklaşıldığında eğrinin altında kalan alan normal dağılımda %68 lik bir alanı ifade etmktedir. Ortalama etrafında çan eğrisi simetrik olduğu için %68’in yarısı (%34) ortalamanın sağında, geri kalan yarısı (%34) ise solunda yer almaktadır. Ortalamadan (-2σ,+2σ) kadar uzaklaşıldığında eğrinin altında kalan alan normal dağılımda %95.5 lik bir alanı ifade etmktedir.Benzer şekilde %95.5’in yarısı (%48) ortalamanın sağında geri kalan yarısı (%48) ise solunda yer almaktadır.Bu durumda her iki taraf için (σ,2σ) arasında kalan alan %14 olmaktadır. Ortalamadan (-3σ,+3σ) kadar uzaklaşıldığında eğrinin altında kalan alan normal dağılımda %95.5 lik bir alanı ifade etmktedir.Benzer şekilde %99.7’in yarısı (%50) ortalamanın sağında geri kalan yarısı (%50) ise solunda yer almaktadır.Bu durumda her iki taraf için (2σ,3σ) arasında kalan alan %2 olmaktadır.
7
Uygunluk Testi 7.0545 4.7091 -3.6364 11.0182 -14.3273 -17.6727 4.9818 -3.3636 -7.7091 18.9455 s = 12,138 n=10 +12.138 -12.138 +24.276-24.276-36.414+36.414 0 2 3 4 1 0
8
Uygunluk Testi s = 12,138 n=10 +12.138-12.138+24.276-24.276-36.414+36.414 0 Teorikte %2’lik olan bu alan n=10 olduğunda 0.2’ye karşılık gelmektedir. 2 1.4 3 3.4 4 1 1.4 0 0.2 Gözlenen Değerler Beklenen Değerler
9
Uygunluk Testi s = 12,138 n=50 +12.138-12.138+24.276-24.276-36.414+36.414 Teorikte %0.02’lik olan bu alan n=50 olduğunda 1’e karşılık gelmektedir. 7 17 7 1
10
Uygunluk Testi = 0.9244 H 0 hipotezi rededilemez, Hatalar normal dağılmaktadır.
11
Jarque-Bera Normallik Testi 1.Aşama H 0 : u i ’ler normal dağılımlıdır H 1 : u i ’ler normal dağılımlı değildir 2.Aşama = ? 3.Aşama ,sd =? 4.Aşama JB > ,sd H 0 hipotezi reddedilebilir Sd=?
12
Jarque-Bera Normallik Testi
13
7.0545 4.7091 -3.6364 11.018 -14.327 -17.672 4.9818 -3.3636 -7.7091 18.9455 ee2e2 e3e3 e4e4 49.77 22.18 13.22 121.40 205.27 312.32 24.82 11.31 59.43 358.93 e 2 = 1178.66 351.07 104.43 -48.09 1337.62 -2940.99 -5519.61 123.64 -38.06 -458.15 6800.15 e 3 = -287.99 2476.65 491.76 174.86 14738.14 42136.40 97546.48 615.95 128.00 3531.95 128832.16 e 4 = 290672.35 e = 0
14
Jarque-Bera Normallik Testi =117.866 =-28.799 =29067.235 = 2 =-0.023 = 2.09
15
Jarque-Bera Normallik Testi 1.AşamaH 0 : u i ’ler normal dağılımlıdır H 1 : u i ’ler normal dağılımlı değildir 2.Aşama = 0.05 3.Aşama ,sd =5.991 4.Aşama JB < ,sd H 0 hipotezi reddedilemez. Sd=2 0.3459
16
ÇOKLU DOĞRUSALLIĞIN ANLAMI Çoklu doğrusal bağlantı; Bağımsız değişkenler arasında doğrusal (yada doğrusala yakın) ilişki olmasıdır. 1.İse parametreler belirlenemez hale gelir. Her bir parametre için ayrı ayrı sayısal değerler bulmak zorlaşır. 2. ise bu değişkenlere ortogonal değişkenler denir ve katsayıların tahmininde çoklu doğrusal bağlantı açısından hiçbir sorun yoktur. 3. ise tam çoklu doğrusal bağlantı yoktur.
17
Çoklu Doğrusal Bağlantı X3X3 X2X2 r X 2 X 3 = 1 Tam Çoklu Doğrusal Bağlantı
18
ÇOKLU DOĞRUSALLIĞIN NEDENLERİ İktisadi değişkenlerin zaman içerisinde birlikte değişme eğiliminde olmaları Bazı açıklayıcı değişkenlerin gecikmeli değerlerinin ilişkide ayrı birer etmen olarak kullanılmasıdır. Hem zaman serilerinde hem de kesit verilerinde kullanılmaktadır.
19
Çoklu Doğrusal Bağlantı Y = b 1 + b 2 X 2 + b 3 X 3 + u y = b 2 x 2 + b 3 x 3 + u X 3 = 2 X 2
20
Çoklu Doğrusal Bağlantı Araba Bakım Masrafları Model Tahminleri DeğişkenlerModel AModel BModel C Sabit Yas Km s.d. Düzeltilmiş- R 2 -626.24 (-5.98) 7.35 (22.16) 55 0.897 -796.07 (-5.91) 53.45 (18.27) 55 0.856 -151.15 (-7.06) 27.58 (9.58) 7.29 (0.06) 54 0.946 Parantez içinde verilen ifadeler ilgili katsayın t istatistikleridir.
21
Çoklu Doğrusal Bağlantının Ortaya Çıkardığı Sonuçlar Regresyon Katsayılarının Değerleri Belirsiz Olur, Regresyon Katsayılarının Varyansları Büyür, t-istatistikleri azalır, Güven Aralıkları Büyür, R 2 Olduğundan Büyük Çıkar, Katsayı Tahmincileri ve Standart Hataları Verilerdeki Küçük değişmelerden Önemli Ölçüde Etkilenirler, Teorik beklentinin tersi bir durum ortaya çıkar
22
ÇOKLU DOĞRUSALLIĞIN DOĞURDUĞU SONUÇLAR a) Katsayıları tahminleri belirlenemez. b)Tahminlerin standart hataları sonsuz büyük olur.
23
Çoklu Doğrusal Bağlantının Varlığının Tesbit Edilmesi Tahmin edilen modelin t-istatistikleri anlamsız iken, R 2 yüksek ve katsayıların topluca testi sonucu F istatistiğinin anlamlı bulunması, Bağımsız değişkenler arasında ikişerli kuvvetli ilişki bulunması Yardımcı Regresyonlar Kriteri Y = b 1 + b 2 X 2 + b 3 X 3 +b 4 X 4 + u X 2 = a 12 + a 32 X 3 +a 42 X 4 + v 2 X 3 = a 13 + a 23 X 2 +a 43 X 4 + v 3 X 4 = a 14 + a 24 X 2 +a 34 X 3 + v 4
24
Çoklu Doğrusal Bağlantının Varlığının Tesbit Edilmesi Maksimum-Minimum has (=öz) değerler ve şartlı indeks Varyans Artış faktörü Ridge Regresyon yöntemi
25
Çoklu Doğrusal Bağlantı Problemini Ortadan Kaldırma Yolları 1.Ön Bilgi Yöntemi Y = b 1 + b 2 X 2 + b 3 X 3 +b 4 X 4 + ub 3 = 0.2b 2 Y = b 1 + b 2 X 2 + 0.2b 2 X 3 +b 4 X 4 + u Y = b 1 + b 2 (X 2 + 0.2 X 3 )+b 4 X 4 + u Y = b 1 + b 2 X*+ b 4 X 4 + u
26
Çoklu Doğrusal Bağlantı Problemini Ortadan Kaldırma Yolları 2.Kesit ve Zaman Serilerinin Birleştirilmesi lnY = b 1 + b 2 lnP tA + b 3 lnI t +b 4 lnP tB + u lnY - b 3 lnI t = b 1 + b 2 lnP tA +b 4 lnP tB + u lnY* = b 1 + b 2 lnP tA +b 4 lnP tB + u 3.Bazı Değişkenlerin Modelden Çıkarılması, 4.Değişkenleri Dönüştürme Yöntemi, 5.Ek veya Yeni Örnek Verisi Temin etme, 6.Diğer Yöntemler.
27
Ev Talebi Model Tahminleri DeğişkenlerModel AModel BModel C s.d. Sabit Faiz Nüfus GSMH Düzeltilmiş-R 2 20 0.371 -3812.93 (-2.40) -198.40 (-3.87) 33.82 (3.61) 0.375 20 687.90 (1.80) -169.66 (-3.87) 0.91 (3.64) 0.348 19 14.90 (0.41) -184.75 (-3.18) -1315.75 (-0.27) 0.52 (0.54) r(GSMH,Nüfus)=0.99r(GSMH,faiz)=0.88 r(Nüfus,faiz)= 0.91
28
Araba Bakım Masrafları Model Tahminleri DeğişkenlerModel AModel BModel C Sabit Yas Km s.d. Düzeltilmiş- R 2 -626.24 (-5.98) 7.35 (22.16) 55 0.897 -796.07 (-5.91) 53.45 (18.27) 55 0.856 -151.15 (-7.06) 27.58 (9.58) 7.29 (0.06) 54 0.946 Km = 4.191 + 0.134 Yaş (8.74)(88.11) Bakım = 7.29 + 27.58 Yaş- 151.15 (4.191 + 0.134 Yaş) = -626,18 + 7.33Yaş
29
Dependent Variable: HOUSING Method: Least Squares Sample: 1963 1985 Included observations: 23 VariableCoefficientStd. Errort-StatisticProb. C5087.43411045.790.4605770.6506 GNP1.7563532.1399840.8207320.4225 INTRATE-174.691861.00066-2.8637690.0103 POP-33.4336983.07564-0.4024490.6921 UNEMP79.71988122.57940.6503530.5237 R-squared0.449950 Mean dependent var1601.100 Adjusted R-squared0.327716 S.D. dependent var345.4715 S.E. of regression283.2621 Akaike info criterion14.32028 Sum squared resid1444274. Schwarz criterion14.56713 Log likelihood-159.6833 F-statistic3.681069 Durbin-Watson stat0.793569 Prob(F-statistic)0.023274 ÇOKLU DOĞRUSAL BAĞLANTININ TESPİTİ– YARDIMCI REGRESYON DENKLEMİNİN KULLANILMASI
30
Yardımcı Regresyon Modelleri için F testi 1.Aşama: H 0 : Çoklu doğrusal bağlantı yoktur. H 1 : Çoklu doğrusal bağlantı vardır. F 0.05,(5-2=3),(23-5+1=19) =3.13 2.Aşama: 3.Aşama: 4.Aşama: F hes > F tab H 0 reddedilir.
31
1.Aşama: H 0 : Çoklu doğrusal bağlantı yoktur. H 1 : Çoklu doğrusal bağlantı vardır. 2.Aşama: 3.Aşama: 4.Aşama: F hes > F tab H 0 reddedilir. F 0.05,(3),(19) =3.13
32
1.Aşama: H 0 : Çoklu doğrusal bağlantı yoktur. H 1 : Çoklu doğrusal bağlantı vardır. 2.Aşama: 3.Aşama: 4.Aşama : F hes > F tab H 0 reddedilir. F 0.05,(3),(19) =3.13
33
1.Aşama:H 0 : Çoklu doğrusal bağlantı yoktur. H 1 : Çoklu doğrusal bağlantı vardır. 2.Aşama: 3.Aşama: 4.Aşama:F hes > F tab H 0 reddedilir. F 0.05,(3),(19) =3.13
Benzer bir sunumlar
© 2024 SlidePlayer.biz.tr Inc.
All rights reserved.