Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan.

Benzer bir sunumlar


... konulu sunumlar: "Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan."— Sunum transkripti:

1

2 Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan testlerin geçerliliği u i ’nin normal dağılmasına bağlıdır. Çünkü u i normal dağılıyorsa, EKK b 1 ve b 2 ’nin tahmincileri de normal dağılır. Normal dağılmış değişkenleri olan bir doğrusal fonksiyonun kendisi de NORMAL DAĞILIR.

3 Normal Dağılımlılık u i değerleri - + E(u i )=0

4 Jarque-Bera Normallik Testi 1.Aşama H 0 : u i ’ler normal dağılımlıdır H 1 : u i ’ler normal dağılımlı değildir 2.Aşama  = ? 3.Aşama   ,sd =? 4.Aşama JB >   ,sd H 0 hipotezi reddedilebilir Sd=?

5 Jarque-Bera Normallik Testi

6 7.0545 4.7091 -3.6364 11.0182 - 14.3273 - 17.6727 4.9818 -3.3636 -7.7091 18.9455 ee2e2 e3e3 e4e4 49.77 22.18 13.22 121.40 205.27 312.32 24.82 11.31 59.43 358.93  e 2 = 1178.66 351.07 104.43 -48.09 1337.62 -2940.99 -5519.61 123.64 -38.06 -458.15 6800.15  e 3 = -287.99 2476.65 491.76 174.86 14738.14 42136.40 97546.48 615.95 128.00 3531.95 128832.16  e 4 = 290672.35  e = 0

7 Jarque-Bera Normallik Testi =117.866 =-28.799 =29067.235 =  2 =-0.023 = 2.09

8 Jarque-Bera Normallik Testi 1.AşamaH 0 : u i ’ler normal dağılımlıdır H 1 : u i ’ler normal dağılımlı değildir 2.Aşama  = 0.05 3.Aşama   ,sd =5.991 4.Aşama JB <   ,sd H 0 hipotezi reddedilemez. Sd=2 0.3459

9 Çoklu Doğrusal Bağlantı X3X3 X2X2 r X 2 X 3 = 1 Tam Çoklu Doğrusal Bağlantı

10 Çoklu Doğrusal Bağlantı Y = b 1 + b 2 X 2 + b 3 X 3 + u y = b 2 x 2 + b 3 x 3 + u X 3 = 2 X 2

11 Çoklu Doğrusal Bağlantı Araba Bakım Masrafları Model Tahminleri DeğişkenlerModel AModel BModel C Sabit Yas Km s.d. Düzeltilmiş- R 2 -626.24 (-5.98) 7.35 (22.16) 55 0.897 -796.07 (-5.91) 53.45 (18.27) 55 0.856 -151.15 (-7.06) 27.58 (9.58) 7.29 (0.06) 54 0.946

12 Çoklu Doğrusal Bağlantının Ortaya Çıkardığı Sonuçlar Regresyon Katsayılarının Değerleri Belirsiz Olur, Regresyon Katsayılarının Varyansları Büyür, t-istatistikleri azalır, Güven Aralıkları Büyür, R 2 Olduğundan Büyük Çıkar, Katsayı Tahmincileri ve Standart Hataları Verilerdeki Küçük değişmelerden Önemli Ölçüde Etkilenirler,

13 Çoklu Doğrusal Bağlantının Varlığının Tesbit Edilmesi Tahmin edilen modelin t-istatistikleri anlamsız iken, R 2 yüksek ve katsayıların topluca testi sonucu F istatistiğinin anlamlı bulunması, Bağımsız değişkenler arasında ikişerli kuvvetli ilişki bulunması Yardımcı Regresyonlar Kriteri Y = b 1 + b 2 X 2 + b 3 X 3 +b 4 X 4 + u X 2 = a 12 + a 32 X 3 +a 42 X 4 + v 2 X 3 = a 13 + a 23 X 2 +a 43 X 4 + v 3 X 4 = a 14 + a 24 X 2 +a 34 X 3 + v 4

14 Çoklu Doğrusal Bağlantının Varlığının Tesbit Edilmesi Maksimum-Minimum has (=öz) değerler ve şartlı indeks Varyans Artış faktörü Ridge Regresyon yöntemi

15 Çoklu Doğrusal Bağlantı Problemini Ortadan Kaldırma Yolları 1.Ön Bilgi Yöntemi Y = b 1 + b 2 X 2 + b 3 X 3 +b 4 X 4 + ub 3 = 0.2b 2 Y = b 1 + b 2 X 2 + 0.2b 2 X 3 +b 4 X 4 + u Y = b 1 + b 2 (X 2 + 0.2 X 3 )+b 4 X 4 + u Y = b 1 + b 2 X*+ b 4 X 4 + u

16 Çoklu Doğrusal Bağlantı Problemini Ortadan Kaldırma Yolları 2.Kesit ve Zaman Serilerinin Birleştirilmesi lnY = b 1 + b 2 lnP tA + b 3 lnI t +b 4 lnP tB + u lnY - b 3 lnI t = b 1 + b 2 lnP tA +b 4 lnP tB + u lnY* = b 1 + b 2 lnP tA +b 4 lnP tB + u 3.Bazı Değişkenlerin Modelden Çıkarılması, 4.Değişkenleri Dönüştürme Yöntemi, 5.Ek veya Yeni Örnek Verisi Temin etme, 6.Diğer Yöntemler.

17 Ev Talebi Model Tahminleri DeğişkenlerModel AModel BModel C s.d. Sabit Faiz Nüfus GSMH Düzeltilmiş-R 2 20 0.371 -3812.93 (-2.40) -198.40 (-3.87) 33.82 (3.61) 0.375 20 687.90 (1.80) -169.66 (-3.87) 0.91 (3.64) 0.348 19 14.90 (0.41) -184.75 (-3.18) -1315.75 (-0.27) 0.52 (0.54) r(GSMH,Nüfus)=0.99r(GSMH,faiz)=0.88 r(Nüfus,faiz)= 0.91

18 Km = 4.191 + 0.134 Yaş (8.74)(88.11) Bakım = 7.29 + 27.58 Yaş- 151.15 (4.191 + 0.134 Yaş = -626,18 + 7.33Yaş


"Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan." indir ppt

Benzer bir sunumlar


Google Reklamları