Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

09.04.2017 SEMİNER Toplam Kalite Yönetiminin Işığı Altında Yapay Zekanın Endüstriyel Problemlerin Çözümünde Kullanımı Konuşmacı Yrd. Doç. Dr. Türkay Dereli.

Benzer bir sunumlar


... konulu sunumlar: "09.04.2017 SEMİNER Toplam Kalite Yönetiminin Işığı Altında Yapay Zekanın Endüstriyel Problemlerin Çözümünde Kullanımı Konuşmacı Yrd. Doç. Dr. Türkay Dereli."— Sunum transkripti:

1 SEMİNER Toplam Kalite Yönetiminin Işığı Altında Yapay Zekanın Endüstriyel Problemlerin Çözümünde Kullanımı Konuşmacı Yrd. Doç. Dr. Türkay Dereli Gaziantep Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölüm Başkanı Tarih 12 Mayıs 2000 Cuma 09:00 Yer Mühendislik Fakültesi Konferans Salonu E N D Ü S T R İ M Ü H E N D İ S L İ Ğ İ B Ö L Ü M Ü

2 YAPAY ZEKA TEKNİKLERİNİN BİLGİSAYAR DESTEKLİ TASARIM VE ÜRETİM SİSTEMLERİNDE KULLANILMASI ama önce yapay zeka...

3 Yapay Zeka Nedir ? Niçin Yapay Zeka ? Yapay Zeka Araçları
Akıllı (Zeki) İmalat Sistemleri

4 YAPAY ZEKA “Yapay Zeka” (YZ) tanımı Yapay Zeka Testleri
Zeki Sistemlerin Özellikleri YZ’nın Geleneksel Sistemlerden Farkları

5 YAPAY ZEKA-1 Yapay Zeka (Artificial Intelligence); öğrenme, gerekçeleme, problem çözme, yabancı bir dili alma v.b. gibi insanoğlunun davranışlarını gösterebilen sistemlerle ilgilenen bir bilgisayar bilimidir. Yapay Zeka’nın ana amacı insanların davranışlarının ve sezgisel yeteneklerinin bilgisayar üzerinde benzetimidir. İnsanoğlu esas olarak Bilgi’yi (Knowledge) kullanmakta ve onu işlemektedir. Bu yüzden bilgi ve bilginin kullanımı Yapay Zeka’nın da anahtar karakteristikleridir.

6 YAPAY ZEKA-2 Yapay Zeka’nın standart bir tanımı yapılamamakla beraber, yapılagelen tanımların ortak yönleri şunlardır; YZ bir bilgisayar bilim dalıdır, YZ bilgi ve davranışa dayanır, YZ zeki davranışları araştırmaktadır. Zeka rakam ya da veriler yerine bilgiye dayalı mantıksal bir süreçtir. Bilgi ve bilginin işlenmesi ile zeki davranışlar ortaya çıkarılabilir.

7 YAPAY ZEKA-3 Turing Testi Çin Odası Testi
Bir programın ya da sistemin zeki ya da akıllı olup olmadığını sınamak için bazı testler uygulanır; Turing Testi Çin Odası Testi

8 Şekil ya da resim tanıma
YAPAY ZEKA-4 Bir programın ya da sistemin zeki ya da akıllı olarak kabul edilebilmesi için, en azından aşağıdaki özelliklerden bazılarını sağlayabilmesi gerekir; Karar verme Algılama Öğrenme Problem çözme Muhakeme Şekil ya da resim tanıma Doğal dil anlama

9 YAPAY ZEKA-5 Öğrenebilirler Tecrübe kazanabilirler
YZ’nın geleneksel programlamadan birçok farkı vardır; Öğrenebilirler Tecrübe kazanabilirler Bu tecrübeyi kullanarak yeni problemleri çözebilirler Eksik veri ile problemler çözebilirler Belirli bir algoritma yerine sezgisel yöntemler kullanırlar Yanlış yapabilirler

10 YAPAY ZEKA ARAÇLARI Uzman Sistemler Yapay Sinir Ağları Bulanık Mantık
Genetik Algoritmalar Tabu Araştırma Algoritmaları Benzetilmiş Tavlama Benzetilmiş Su Verme Vaka Tabanlı Gerekçeleme

11 İNSAN VE ZEKA BİR İNSANDA ORTALAMA: Hücre Adeti: 220 milyon
Damar Uzunluğu: km Kan Hızı: m/saat Ağrıyı Duyma: 0.9 saniye Isıyı Duyma: 0.16 saniye Dokunmayı Duyma: 0.12 saniye Sinir Sistemi Bağlantı Noktası (NEURON) Sayısı: 1 trilyon Sinir Sistemi Bağlantı Sayısı: 10 trilyon Sinir Sistemi - Operasyon Sayısı: 1 milyar operasyon / saniye

12 İNSAN DAVRANIŞLARI VE BAZI ÖZELLİKLER
İNSANLAR: Öğrenebilir ve öğretilebilir Düşünebilir Tecrübe kazanabilir, geçmiş tecrübelerini kullanarak yeni problemleri çözebilir Karar verebilir Mantık yürütebilir Tahmin yapabilir Kalabalıkta ya da karanlıkta gördüğü bir yüzü anımsayabilir Günlük yaşantısında farkında olmadığı dilsel değişkenler kullanır Çoğalabilirler, çocukları büyük bir ihtimalle kendilerine benzer

13 UZMAN SİSTEMLER (EXPERT SYSTEMS)
Geleneksel Programlamadan Farkları Avantaj ve Dezavantajları Kullanım Alanları Uzman Sistem Geliştirme Araçları

14 UZMAN SİSTEMLER-1 Uzman Sistemler en eski Yapay Zeka araçlarından birisidir Belirli bir alanda, bir uzmanın önerdiği çözümleri üretebilen, o alanın bilgileri ile donatılmış, gerekçeleme metotları ile olayları süzebilen programlardır. Bilgi Tabanlı Sistemler (Knowledge Based Systems) olarak ta bilinirler.

15 UZMAN SİSTEMLER-2 Genel Yapı ve Çalışma Mekanizması

16 UZMAN SİSTEMLER-3 KULLANIM ALANLARI Proses tasarımı ve seçimi
Ürün tasarımı, İşlem planlama Medikal Tedavi Kalite Kontrol Çizelgeleme Ses işleme Görüntü tanıma Robotik uygulamaları Hata düzeltme

17 UZMAN SİSTEMLER-4 AVANTAJ VE DEZAVANTAJLAR
Uzman Sistemler, çıkardıkları sonuçları nasıl ve neden çıkardığını açıklayabilir Üçüncü kişiler, uzman sistemleri yani kurallar üreterek rahatlıkla değiştirebilir Uzman sisteme bilgiyi verecek uzmanı bulmak her zaman kolay olmayabilir Uzmanlar bilgilerini kurallar halinde belirtemeye bilir

18 UZMAN SİSTEMLER-5 Programlama Dilleri: Prolog, C++, LISP
UZMAN SİSTEM GELİŞTİRME ARAÇLARI Programlama Dilleri: Prolog, C++, LISP Kabuklar: Leonardo, VP-Expert, KES, GoldWorks

19 YAPAY SİNİR AĞLARI (ARTIFICIAL NEURAL NETWORKS)
Öğrenme - Öğretme ? Geleneksel programlamadan farkları Avantaj ve Dezavantajları Kullanım Alanları Yapay Sinir Ağları Sistem Geliştirme Araçları

20 YAPAY SİNİR AĞLARI-1 Yapay Sinir Ağları (YSA) genel olarak insan beyninin ya da merkezi sinir sisteminin çalışma prensiplerinin taklit eden bilgi işleme sistemleridir. YSA’da bilgi basit işlem elemanları arasında paralel olarak dağıtılmış olup, her bir proses elemanı birbiri ile bağlantılıdır. Bu yüzden YSA bazen, Paralel Dağıtılmış İşleme Sistemleri (Paralel Distributed Processing Systems) ya da Bağlantıcı Sistemler (Connectionist Systems) olarak ta adlandırılırlar.

21 YAPAY SİNİR AĞLARI-2 Öğrenmenin Temelleri - Pavlov’un Köpekleri

22 YAPAY SİNİR AĞLARI-3 Genel Yapı ve Çalışma Mekanizması
Öğretmenli ve Öğretmensiz Öğrenme

23 YAPAY SİNİR AĞLARI-4 Genel Yapı ve Çalışma Mekanizması
Bir Proses Elemanın Çalışması

24 YAPAY SİNİR AĞLARI-5 SINIFLANDIRMA

25 YAPAY SİNİR AĞLARI-6 KULLANIM ALANLARI Robotik Uygulamaları
Proses kontrol Ürün tasarımı İşlem planlama Kalite Kontrol Gerçek zamanlı modelleme Adaptif kontrol Görüntü tanıma Borsa endeksi, enflasyon ve kur tahmini, v.b

26 YAPAY SİNİR AĞLARI-7 BİR ÖRNEK

27 YAPAY SİNİR AĞLARI-8 AVANTAJ VE DEZAVANTAJLAR
Uzman sistemler gibi bilgiyi kurallar halinde istemezler Öğrenebilir ve hiç karşılaşmadıkları bir problemi çözebilirler Paralel yapıları nedeniyle çok hızlı çalışırlar Çıkardıkları sonuçları nasıl ve neden çıkardığını açıklayamaz (kapalı kutu) Eğitimleri oldukça zaman alıcı ve zordur

28 YAPAY SİNİR AĞLARI-9 YSA GELİŞTİRME ARAÇLARI Programlama Dilleri: C (Nesneye Yönelik Programlama) Kabuklar: NeuralDesk, NeuroShell2, MATLAB Neural Network Tool Box

29 BULANIK MANTIK (FUZZY LOGIC)
Geleneksel Mantık Geleneksel Programlamadan Farkları Avantaj ve Dezavantajları Kullanım Alanları Bulanık Mantık Tabanlı Yazılım Geliştirme Araçları

30 BULANIK MANTIK-1 Bulanık Mantık insanların her gün kullandığı ve davranışlarının yorumlandığı yapıya ulaşılmasını sağlayan matematiksel bir disiplindir. İnsanlar günlük hayatta; tam olarak tanımlanmamış ve nümerik olmayan dilsel niteleyiciler (soğuk, hafif soğuk, ılık, sıcak, çok sıcak vb. gibi) kullanarak kararlar verir ve problemlerini çözerler.

31 BULANIK MANTIK-2 Bulanık Mantık---> Temeli Bulanık Küme Kuramı’na dayanır (ZADEH, 1965). Geleneksel mantık sistemi yalnızca 1 ve 0 üzerine kuruludur. Doğru veya yanlış vardır. Bu ikisinin arası yoktur. Belirsiz bir problemin çözümü güçtür. Bulanık Mantık sisteminde de 1 ve 0 değerleri vardır. Bununla birlikte 0 ile 1 arasındaki değerler de kullanılır. Doğru ya da yanlışın ne kadar doğru ya da ne kadar yanlış olduğu belirlenebilir. Bulanık Mantık Olasılık Teorisinden farklıdır. Olasılık’ta problemin kendisi tanımlıdır.

32 BULANIK MANTIK-3 Bulanık Mantık Yapay Zeka metotları içerisinde en çok endüstriyel uygulama alanı bulan araçtır. KULLANIM ALANLARI Elektrikli ev aletleri Oto elektroniği, fren sistemleri Elektronik denetim sistemleri Karar Verme Proses Planlama

33 BULANIK MANTIK-4 AVANTAJ VE DEZAVANTAJLARI
Bulanık Mantık eksik tanımlı problemlerin çözümü için uygundur Uygulanması oldukça kolaydır. Bulanık Mantık Sistemleri öğrenemez ya da öğretilemez.

34 BULANIK MANTIK-5 Genel Yapı ve Çalışma Mekanizması

35 BULANIK MANTIK-6 Hangisini içersiniz ?
Çölde kayboldunuz. Elinizde 2 şişe su var. Birinin üzerinde %91 olasılıkla kirli su (OM) Diğerinin üzerinde %91’i kirli su (BM) yazıyor. Hangisini içersiniz ?

36 BULANIK MANTIK-7 Fuzzy Logic Çamaşır Makinesi Nasıl Çalışıyor ?

37 BULANIK MANTIK-8 Uygulama Alanlarından Örnekler

38 BULANIK MANTIK-9 Programlama Dilleri: C++
BULANIK MANTIK - SİSTEM GELİŞTİRME ARAÇLARI Programlama Dilleri: C++ Paket Programlar: FuzzyTech, MATLAB Fuzzy Logic Tool Box

39 KOMBİNATORYEL ENİYİLEME ARAÇLARI (COMBINATORIAL OPTIMIZATION TOOLS)
Genetik Algoritmalar Tabu Araştırma Algoritmaları Benzetilmiş Tavlama ve Benzetilmiş Su Verme Vaka Tabanlı Gerekçeleme Avantaj ve Dezavantajları Kullanım Alanları

40 KOMBİNATORYEL ENİYİLEME ARAÇLARI-1
Avantajları, Dezavantajları, Kullanım Alanları Türev, integral gibi matematiksel araçları kullanmadan fonksiyon eniyilemelerini kolaylıkla yapabilirler.

41 KOMBİNATORYEL ENİYİLEME ARAÇLARI-2
Genetik Algoritmalar EVRİM teorisini ilham alır. Genetik Operatörler Yeniden Üretme (Reproduction) Çapraz Değiştirme (Crossover) Tek Bir Bilgi Değiştirme (Mutation) Koyun Dolly Kromozomlar - UYUM FONKSİYONU

42 GA-STRATEJİSİ

43 KOMBİNATORYEL ENİYİLEME ARAÇLARI-3
Genetik Algoritmalar

44 KOMBİNATORYEL ENİYİLEME ARAÇLARI-4
Tabu Araştırma Algoritmaları TABU

45 KOMBİNATORYEL ENİYİLEME ARAÇLARI-5
Benzetilmiş Tavlama ve Su Verme TAVLAMA ve SU VERME ısıl işlem metotlarıdır

46 KOMBİNATORYEL ENİYİLEME ARAÇLARI-6
Vaka Tabanlı Gerekçeleme

47 NEURO-FUZZY EXPERT SYSTEMS BULANIK AĞLI UZMAN SİZTEMLER

48 NELER YAPILABİLİR ? Akıllı Trafik Kavşakları, Akıllı Binalar
Akıllı İmalat Sistemleri Akıllı Denetim Sistemleri Eniyileme Borsa endeks, döviz ve enflasyon tahminleri Dilden dile çeviri

49 Yaygın Yapay Zeka Tekniklerinin Kullanımı

50 TEŞEKKÜRLER © Türkay Dereli
SABIRLA DİNLEDİĞİNİZ İÇİN...


"09.04.2017 SEMİNER Toplam Kalite Yönetiminin Işığı Altında Yapay Zekanın Endüstriyel Problemlerin Çözümünde Kullanımı Konuşmacı Yrd. Doç. Dr. Türkay Dereli." indir ppt

Benzer bir sunumlar


Google Reklamları