Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

Www.hayalkatibi.com.  Yer Kabuğunu Etkileyen Levha Hareketleri  Levha tektoniği kuramını belgeleyen kanıtlar artık inandırıcı bir düzeye ulaştığından.

Benzer bir sunumlar


... konulu sunumlar: "Www.hayalkatibi.com.  Yer Kabuğunu Etkileyen Levha Hareketleri  Levha tektoniği kuramını belgeleyen kanıtlar artık inandırıcı bir düzeye ulaştığından."— Sunum transkripti:

1 www.hayalkatibi.com

2  Yer Kabuğunu Etkileyen Levha Hareketleri  Levha tektoniği kuramını belgeleyen kanıtlar artık inandırıcı bir düzeye ulaştığından levhaların hareketi kavramı bugün benimsenmiştir.Bundan sonraki aşama söz konusu bu hareketlerin itici gücünü tespit etmek olacaktır.Bu gücün kökeniyse yerkürenin incelenmesi çok zor olan derin katmanlarında aramak gerekir. Levhaların yer değiştirmesinden iç mantoda oluşan konveksiyon akımlarının sorumlu olduğu, genel olarak kabul edilen bir fikirdir.Bu akımlar hücreler oluşturarak tektonik sırtların altında ıraksarlar.   Levhaların altında derinlerde gelişen bu itici güce bizzat levhaların davranışı da eklenir. Astenosferin sırtlar düzeyine yükselişi, göreli olarak hafif bir malzemenin varlığıyla açıklanır; topografik olarak yüksek konumdaki bu malzeme yerçekimi etkisiyle yanlara doğru akar.Tersine okyanus taşküresi yaşlandıkça soğur ve dolayısıyla yoğunluğu artar.Bu yoğun katmanın batması levhanın derine doğru çekilmesine yol açar.Ne var ki yer kürenin içinde ne olup bittiğini anlamak için jeofizikçilerin yapacağı daha pek çok şey vardır. Olaya her şeyden önce sismolojik yöntemle yaklaşacaklar.   Levhalar Niçin Hareket Eder?, THÉMA LAROUSSE www.hayalkatibi.com

3  PLAKA TEKTONİĞİ olarak da bilinir, geçmişteki ve günümüzdeki depremleri, yanardağ etkinlikleri ve dağ oluşumu süreçlerini, Yer yüzeyini oluşturan çok büyük kabuk bloklarının (levhalar) karşılıklı hareketleriyle (çarpışmaları ve ayrılmaları) açıklayan kuram.  Yer kabuğu bir düzine kadar büyük levha ile bir dizi küçük levhadan oluşur.  Levhalardaki kayaçlar esnemez (rijit) bir kütle halinde hareket eder; bunlar fazlaca bükülmez (fleksür) ve pek az sismik ya da volkanik etkinlik gösterir.Levhaların kenarları (sınırları) ise dar kuşaklar biçimindedir; dünyadaki depremlerin ve yanardağ etkinliklerinin yüzde 80'i burada yer alır.Üç tip sınır vardır.Bunlardan birincisi, okyanus ortasında 80 bin km boyunca uzanan uzun, etkin sırtların tepe noktalarını izleyen ve çekme gerilmenin yol açtığı çok ince bir sığ depremler (odağı 65 km'ye kadar olan depremler) kuşağıdır.İkinci tip sınıra ise bu sırtların düzlüklere karıştığı etek alanlarında karşılaşılır.Bu bölgelerdeki kırıklar boyunca gerçekleşen dep-remler çok daha şiddetlidir; bu depremler, kırığın her iki yakasındaki levhaların ters yönlerde birbirlerine sürtünerek hareket etmesinden kaynaklanır.Üçüncü sınır tipini oluşturan depremler daha seyrek dağılmış olmakla birlikte, çok daha derin odaklıdır (145 km'den daha derin).Bu depremler, okyanus tabanının nor-mal düzeyinden çok daha derinlere (10,5 km'ye kadar) indiği çukurluklar boyunca çok ince bir kuşak oluş-turur.Bu sınırdan uzaklaştıkça maksimum deprem derinliği bir eğim düzlemi boyunca giderek artar; çukurlukların sınır bölgelerinde iyice sığlaşan depremlere ise temel olarak buralardaki yanardağ etkinlikleri neden olur.   Sırtların tepe noktalarındaki depremlere, her iki yakadaki levhaların ters yönlerde hareket etmesi sonucunda oluşan gerilmeler yol açar.Bu hareket aynı zamanda alttaki sıcak kayaçlar üzerindeki basıncın açığa çıkmasını sağlayarak bunların erimeye başlamasına neden olur.Böylece oluşan magmalar yükselerek ya-nardağları oluşturur (İzlanda'da olduğu gibi), ardından katılaşarak germe kuvvetlerinin süren etkisiyle çatlar.Bu süreçle her levhanın kenar bölümlerine yeni volkanik kayaçlar eklenir ve levhalar "yapıcı" sınır ya da ıraksak sınır olarak adlandırılan bu sınırlar boyunca büyür.Lehvaların hareket etmekte olduğunu gösteren tek kanıt depremlerin yapısı değildir; okyanusların zemininde oluşan volkanik kayaçların yaşı da bu ol-guya işaret eder.Kayaçların yaşı, bunların üzerine çökelen tortulların içerdiği fosillere bakılarak ya da gemilerden gerçekleştirilen ölçümlerle bu kayaçların magnetizmalarındaki sapmaların belirlenmesi ve yorumlanmasıyla saptanabilir.Bu çalışmaların sonucunda, en genç volkanik kayaçların okyanus ortası sırt-ların tepe noktalarında ve en yaşlıların da en derin bölgelerde, yani okyanus çukurluklarında yer alanlar olduğu belirlenmiştir.Ama hiçbir yerde 190 milyon yıldan daha yaşlı kayaca rastlanmamıştır; daha yaşlı ok-yanus kayaçlarının zaman içinde tahrip olduğu düşünülmektedir.   Çukurluk sınırı "yıkıcı" sınır ya da yakınsak sınır olarak tanımlanır, çünkü bu bölgede okyanus kayaçları bir eğim düzlemi boyunca yermantosunun içine taşınır.Bu tür yerlere dalma-batma bölgesi denir. Herhangi bir kıtanın dalma-batma olayı gerçekleşen kenar bölümlerinde yanardağ etkinlikleri karalardaki kayaçların yapısını değiştirir ve And Dağları gibi sıra dağların ya da dağ zincirlerinin oluşumuna yol açar. Öteki yerlerde ise yanardağ etkinlikleri, Büyük Okyanus'un güneybatısında olduğu gibi ada yaylarının o-luşmasına yol açar.Yıkıcı sınırlar, kıta kabuk kayaçlarının oluşturduğu, buna karşılık okyanus kayaçlarının mantoya gömüldüğü yerlerdir.Kıta kayaçlarının yoğunluğu düşük olduğundan, bunlar mantoya batmaz;bir çukurluğa taşındıklarında çarpışarak dağ zincirlerinin oluşumuna neden olurlar.Örneğin Alpler, Afrika ile Avrupa'nın; Himalayalar ise Hindistan ile Asya'nın çarpışması sonucunda ortaya çıkmıştır.   de kıta kayaçları bulunmuyordu www.hayalkatibi.com

4

5

6  Manto hareketleri, Yer'in iç kesimlerinde radyoaktif bozunum sonucunda oluşan ısının yüzeye akta-rılması zorunluluğundan kaynaklanır; bu nedenle konveksiyon (ısının taşınması) düzeni, zamana bağlı ola-rak değişir.Eski levha sınırlarının yerinin değişmesi de bu olgudan kaynaklanır.Kuzey Amerika'daki Batı Cordilleraların oluşmasına neden olan dalma-batma süreci 10 milyon yıl kadar önce büyük ölçüde tamam-lanmıştır (gene de benzer bazı etkinlikler yanardağlar üretmeye [örn. Washington'daki Saint Helens Ya-nardağının süren püskürmeleri] ve Alaska'da depremlere neden olmaya devam etmektedir).   Yüz milyomlarca yıllık bir zaman süreci içinde manto konveksiyonundaki değişmeler, iki büyük blok (Lavrasya [*] ve Gondvana [*]) halinde bulunan eski kıtaların 160-180 milyon yıl kadar önce ayrılarak Atlas ve Hint Okyanuslarının oluşmasına yol açmıştır.Benzer biçimde, kıtalar arasında gerçekleşen bir dizi çarpışma, Kuzey Amerika'nın doğusundaki Apalaş Dağları ile Avrupa ve Afrika'daki Kaledoniyen-Hersiyen dağların oluşmasına neden olmuştur.Manto konveksiyonu hızı, temel olarak manto içindeki ısı üreti-minin kareköküne bağlıdır.Yani, radyojenik ısı üretiminin bugünkünden 5 kat daha fazla olduğu 3 milyar yıl önce, konveksiyon hızı da bugünkünden en az 3 kat daha fazlaydı.Ama bu tür hareketlerin yüzeyde al-dığı biçimlerin daha farklı olduğu sanılmaktadır.Çünkü 4 milyar yıl öncesinde taşküre çok inceydi ve mantoya kolayca gömülüyordu, bu nedenle de kıta kayaçları bulunmuyordu. www.hayalkatibi.com

7

8   Levhaların yanal büyüklüğü oldukça iyi belirlenmiştir, ama kalınlıklarına ilişkin bulgular daha be-lirsizdir.Okyanus sırtlarının doruklarında levhalar çok incedir; ama ısı akışı ve sismik bulgular, doruktan a-şağıya inildikçe levhaların tabanının hızla derinleştiğini, doruktan 9-19 km aşağıda 48-57 km'ye, 960 km aşağıda da 115 km'ye ulaştığını göstermektedir.Levhaların kalınlığı 145 km'yi çok ender aşar.Her levha katı ya da esnemez manto kayaçları ile okyanus kabuk kayaçlarından oluşur; bunlarda her zaman kıta kayaçlarının bulunması gerekmez (örn. Pasifik Levhasında hiç kıta kayacı yoktur).Katı manto ve kabuk ka-yaçlarından oluşan bölgeye taşküre (litosfer) denir; manto kayaçlarının daha yüksek sıcaklıklarda bulundu-ğu ve bu nedenle tektonik gerilmeler altında plastik biçim bozulmasına uğradığı kuşak ise astenosfer olarak adlandırılır.Karalarda, taşkürenin altında her zaman astenosfer bulunmaz.Ayrıca, elmaslı kimberlit gibi volkanik kayaçların varlığı, kıtalardaki taşküre kalınlığının en az 190 km olduğunu ve levha hareketlerine neden olan manto akışının daha da derinlerde gerçekleştiğini göstermektedir. www.hayalkatibi.com

9  Dünya’nın Yapısı İç çekirdek: çok yüksek basınç ve sıcaklık etkisiyle kristal halde bulunan 1.370 km kalınlıkta Dış çekirdek: Demir, nikel gibi ağır metallerin erimiş halde bulunduğu, 2.000 km kalınlıktaki dış çekirdek Manto: Magma adı verilen kızgın akıcı maddeden oluşan 2,900 km kalınlıktaki tabaka Yer kabuğu: 6–35 km kalınlıktaki Dünyanın kabuğu Peki, günümüzdeki kıta parçaları geçmişte tek bir kıta ise nasıl oldu da parçalara ayrılarak birbirinden uzaklaştı? Onları hareket ettiren etki neydi? Wegener’e göre bu sorunun cevabı; kıtaların okyanuslar üzerinde kaymasıydı. Ancak birçok bilim adamı bu görüşü kabul etmedi. Sonraki yıllarda Herry Hommond Hess bilimsel araştırmalar sonucunda kıtalarla birlikte okyanusların da hareket ettiğini ileri sürdü. Çünkü okyanus tabanı, tam ortada, sırt adı verilen noktada ayrılmaktaydı. Onun okyanus tabanı yayılması olarak adlandırılan bu teorisi kıtaların hareketini açıklamaktaydı. Çünkü bilim insanları bu doğrultuda yaptıkları araştırmalar sonunda kıtaların ayrılmasına, ateş küredeki hareketliliğin neden olduğunu keşfetmişlerdir. Buna göre Dünya'mızın katmanlarından biri olan ateş kürede, magma olarak adlandırılan sıcak ve akışkan bir madde bulunmaktadır. Ateş küredeki hareketliliğe de bu magma neden olmaktadır. Bu hareketlilik nedeniyle bir bütün halinde bulunan kıtalar parçalanmış ve şimdiki hale gelmiştir. Gelecekte de kıtaların birbirinden uzaklaşması beklenmektedir. Bilim insanları, belli bir süre sonra kıtaların levha hareketleri sonucunda birleşerek gelecekte tek bir kıta haline geleceğini öne sürmektedirler. Geçmiş zamanlarda da defalarca dev kıtalar oluşmuş ve konveksiyon hareketinin etkisiyle bu kıtalar da tekrar ayrılmıştır. Başka bir deyişle, kıtalar milyonlarca yıl sürebilen uzun surelerde birleşmekte ve sonra tekrar parçalanmaktadır. (Pangea: Günümüzden 250 milyon yıl kadar önce kıtaların tek ve kocaman bir parça halinde olduğunu söyleyen bilim adamları bu kıtaya Pangea adını vermiştir.) Yerkabuğu üzerinde 7 ana, çok sayıda da küçük levha vardır. Bu levhalar bir yılda 1-15 cm arasında hızlarla hareket etmektedirler. Eğer levha bir kıta altında bulunuyorsa kıtasal levha, okyanus altında bulunuyorsa okyanusal levha, hem kıta hem okyanus altında bulunuyorsa okyanusal-kıtasal levha adını alır. www.hayalkatibi.com

10

11

12

13 › A. Levhaların Yaklaşma Hareketi Birbirine yaklaşan levhalar bir süre sonra birbiriyle çarpışabilir. İki levhanın çarpışmasına göre oluşan yeryüzü şekli de değişiklik gösterir. Levhaların birbirine yaklaşması ve çarpışması üç değişik şekilde olabilir. 1. Okyanusal ve Kıtasal Levha Yaklaşmalarında: Okyanusal ve kıtsal levhaların yoğunlukları birbirinden farklıdır.(okyanusal levhanın yoğunluğu daha fazladır) Bu tür iki levha karşılaştığında yoğunluğu daha fazla olan okyanusal levha, kıtasal levhanın altına doğru dalar ve erimeye başlar. Okyanusal levhaların battığı bölgede yüzeyde bir hendek(çukur) oluşur. Bu olayın meydana geldiği bölgeye dalma-batma bölgesi denir. Ateş küre içinde daha derinlere inmeye başlayan okyanusal levha erimeye başlar ve magmaya karışır. Magmada zayıf noktalardan yeryüzüne doğru yükselerek yanardağ kümelerinin oluşumuna neden olur. Örnek: Güney Amerika Levhasını altına giren Nazca Levhası’nı yol açtığı And Dağları buna örnektir. 2. Okyanusal-Okyanusal Levha Karşılaşması: Bu levhalar karşılaştığında ikisi de birbirinin altına dalmaya çalışır. Yoğunluğu fazla olan levha alta dalmayı başarır. Bu dalma nedeniyle yüzeyde derin hendekler oluşur. Alta dalan levha bu bölgede erir ve magmaya karışır. Daha sonra zayıf bulduğu bir noktadan yeryüzüne çıkmaya çalışır ve volkan adaları oluşur. Filipinlerdeki pek çok ada bu şekilde oluşmuştur. 3. Kıtasal-Kıtasal Levha Karşılaşması: Kıtasal levhaların yoğunlukları az olduğu için karşılaştıklarında genellikle batmazlar. Bu levhalar yaklaşarak çarpıştıklarında yerkabuğu çok büyük kıvrımlar oluşturacak şekilde kenarlara itilir ve milyonlarca yıl içinde gerçekleşen bu olaylar sonucunda kıvrımlı sıradağlar oluşur. Ancak bu oluşum her zaman dağ oluşmasıyla sonuçlanmaz. Levhalar çok güçlüyse dağ oluşumu gerçekleşmez ve yerkabuğu eğilebilir, yatık bir hal alabilir ya da kırılabilir. Örnek: Himalaya dağlarının oluşumu bu şekilde gerçekleşmiştir. Ege bölgesindeki Boz dağlar B. Levhaların Uzaklaşma Hareketi Birbirinden uzaklaşan levhalar arasında yarıklar oluşur. Magma bu yarıklardan dışarı çıkar ve soğur. Böylece levhalar birbirinden uzaklaşamaya devam eder. Milyonlarca yıl devam eden bu hareketlilik yeni okyanusların oluşmasına ya da mevcut okyanusların şekil değiştirmesine neden olur. Ateş kürede meydana gelen konveksiyon hareketi zaman zaman da levhaların birbirinden ayrılmasına neden olur. Birbirinden uzaklaşan levhalar sınırda magmanın çoğu levhanın kenarlarında katılaşıp kalırken bir kısmı da çatlaklardan yüzeye çıkarak yayılma sırtları olarak adlandırılan volkanik sıradağları oluşturur. Sürekli olarak biçim değiştiren okyanus tabanları zaman zaman yok olsa da bunların yerine yenileri oluşur. www.hayalkatibi.com

14  C. Levhaların Yanal Hareketi Levhalar aynı yönde veya zıt yönde kayarak ilerleyebilir. Bu hareket yanal hareket olarak adlandırılır. Diğer levha hareketlerinde gözlenen bir kısım levhanın magma içinde erimesi veya taşkürede artma- azalma gibi olaylar yanal hareket sonrasında gözlenmez. Ancak iki levhanın kısa süreli yanal hareketleri yeryüzünde büyük yıkımlara neden olabilir. Yanal hareket sırasında bir levha diğerine dayandığında arada kalan kayalar sıkışarak yerlerinden oynar veya kırılır. Çünkü levhalar arasındaki sürtünme çok büyüktür. Bu kırılma ve kopmalar sırasında açığa çıkan enerji dalgalar halinde yayılarak yeryüzünde sarsılmaya neden olur. Bu olaya deprem denir. Depremler farklı şekilde olabilir. Ancak büyük bölümü fay hattı üzerinde gerçekleşir. Fay hattı: Yer kabuğunda oluşan arazi kırığıdır. Bu kırığın başlama ve bitme noktası arasındaki mesafeye fay hattı denir. Odak noktası: Deprem enerjisinin açığa çıktığı noktadır. Merkez üssü: Odak noktası üzerinde, deprem dalgalarının yeryüzüne en kısa yoldan ulaştığı yerdir. Bu bölge odak noktasına çok yakın olduğu için deprem hasarları diğer yerlere göre daha fazladır. Deprem odak noktasından dalgalar halinde etrafa yayılır. Odak noktasından uzaklaştıkça deprem dalgaları enerjilerini kaybederler. Bu nedenle deprem merkez üssünden uzak bölgelerde yıkıcı etkisini daha az gösterir. Öncü deprem: Ana depremden önce meydana gelen küçük sarsıntılara öncü deprem denir. Artçı deprem: Ana depremden sonra kayaçların yerlerine oturması sürecinde meydana gelen ana depremin büyüklüğünü geçmeyen sarsıntılardır. Deprem büyüklüğü: depremin merkezinde açığa çıkan enerjinin miktarı depremin büyüklüğüdür. Deprem büyüklüğü sismograf adı verilen aletler ile ölçülebilmektedir. Deprem büyüklüğü arttıkça açığa çıkan dalgalar daha uzağa gidebilir. Deprem şiddeti: Deprem bölgesindeki hasara göre belirlenen göreceli bir değerdir. Depremin binalara, insanlara verdiği zarardır. Deprem bölgesi: depremlere sebep olan levha hareketleri, volkanik püskürmeler gibi olayların yerkabuğu üzerinde nerelerde olduğu bilinmektedir. Bu olayların gerçekleştiği ve fayların çok olduğu bölgelere denir www.hayalkatibi.com

15


"Www.hayalkatibi.com.  Yer Kabuğunu Etkileyen Levha Hareketleri  Levha tektoniği kuramını belgeleyen kanıtlar artık inandırıcı bir düzeye ulaştığından." indir ppt

Benzer bir sunumlar


Google Reklamları