BİYOİSTATİSTİK UYGULAMA II

Slides:



Advertisements
Benzer bir sunumlar
Normal Dağılım Dışındaki Teorik Dağılımlar
Advertisements

Çıkarımsal İstatistik
İSTATİSTİK VE OLASILIK I
Biyoistatistik ve Araştırma Yöntemleri
Hafta 10: Sürekli Rassal Değişkenler (Yrd.Doç.Dr. Levent AKSOY)
Hafta 07: Kesikli Değişkenler (Yrd.Doç.Dr. Levent AKSOY)
Standart Normal Dağılım
1 Yeni doğanda Bedensel Gelişim. 2 Baş: Baş bedenin dörtte biri kadardır.Baş bedenin dörtte biri kadardır. Baş çevresi 33-37cm dir.Baş çevresi 33-37cm.
OLASILIK DAĞILIMLARI Bu kısımda teorik olasılık dağılımları incelenecektir. Gerçek hayatta birçok olayın dağılımı bu kısımda inceleyeceğimiz çeşitli olasılık.
STANDART SAPMA ARAŞ.GÖR. MURAT TANDOĞAN
İSTATİSTİK A. G E N E L B İ L G İ. İstatistik, elde edilen bir grup verinin belli hesaplama yöntemiyle objektif değerlendirilmesidir. Hedef - anlam vermek.
Ölçme ve Değerlendirme Semineri
OLASILIK ve OLASILIK DAĞILIMLARI
Temel İstatistik Terimler
Yaygınlık Ölçüleri Bir dağılımdaki değerlerin ortalamaya olan uzaklıkları farklılıklar gösterir. Bu farklılıkların derecesi dağılımın yaygınlığı kavramını.
Tek ve İki Değişkenli Grafikler
TEORİK DAĞILIMLAR 1- Binomiyal Dağılım 2- Poisson Dağılım
SÜREKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK YOĞUNLUK FONKSİYONLARI
OLASILIK ve KURAMSAL DAĞILIMLAR
DÜŞÜK DOĞUM TARTILI VE PREMATÜRE BEBEĞİN BAKIMI
OLAY, İMKÂNSIZ OLAY, KESİN OLAY
DAĞILIMLAR VE UYGULAMALAR
B- Yaygınlık Ölçüleri Standart Sapma ve Varyans Varyasyon Katsayısı
KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI
Hafta 08: Binom Dağılımı (Yrd.Doç.Dr. Levent AKSOY)
ANTALYA VALİLİĞİ 112 Acil Çağrı Merkezi SAYILARLA 112 MART
Hafta 05: Olasılık Kuramı (Yrd.Doç.Dr. Levent AKSOY)
Hafta 06: Olasılık Kuramı (Yrd.Doç.Dr. Levent AKSOY)
HATA TİPLERİ Karar H0 Doğru H1 Doğru H0 Kabul Doğru Karar (1 - )
ANTALYA VALİLİĞİ 112 Acil Çağrı Merkezi SAYILARLA 112 HAZİRAN
SÜREKLİ ŞANS DEĞİŞKENLERİ
ANTALYA VALİLİĞİ 112 Acil Çağrı Merkezi SAYILARLA 112 AĞUSTOS
Uygulama I.
GENELLEŞTİRİLMİŞ POISSON
Örneklem Dağılışları.
Sıklık Tabloları ve Tek Değişkenli Grafikler
İki Değişkenli Tablo ve Grafikler
İSTATİSTİK UYGULAMALARI
Bilişim Teknolojileri için İşletme İstatistiği
Olasılık Dağılımları ve Kuramsal Dağılışlar
Bölüm 07 Sürekli Olasılık Dağılımları
Kesikli ve Sürekli Dağılımlar
ANTALYA VALİLİĞİ 112 Acil Çağrı Merkezi SAYILARLA 112 KASIM
İSTATİSTİK YGULAMALARI: SINAVA HAZIRLIK
KESİKLİ RASSAL DEĞİŞKENLER
Güven Aralığı.
Kesikli Olasılık Dağılımları
İSTATİSTİKTE TAHMİN ve HİPOTEZ TESTLERİ İSTATİSTİK
Sürekli Olasılık Dağılımları
Kütahya Siteler Yurdu Talebeleri Sınıf Aşağı yön tuşu ile ilerleyiniz.
Örnek: Kalple ilgili bir çalışmada 25 yaşındaki 24 erkek ve 40 yaşındaki 30 erkeğin sistolik kan basınçları ölçülmüştür. Elde edilen verilere göre 0.05.
Rastgele Değişkenlerin Dağılımları
İSTATİSTİK II Örnekleme Dağılışları & Tahminleyicilerin Özellikleri.
OLASILIK ve İSTATİSTİK
3. Hipergeometrik Dağılım
İSTATİSTİK II BAĞIMSIZLIK TESTLERİ VE İYİ UYUM TESTLERİ “ c2 Kİ- KARE TESTLERİ “
DERS4 Prof.Dr. Serpil CULA
HİPOTEZ TESTLERİ.
Temel İstatistik Terimler
B- Yaygınlık Ölçüleri Standart Sapma ve Varyans Değişim Katsayısı
Uygulama I.
ÖZEL AÇILI ÜÇGENLER ÜÇGENİ Özellik: *** 30 un gördüğü a ise 90 ın gördüğü 2a dır. *** 30 un gördüğü a ise 60 ın gördüğü.
Tıp Fakültesi UYGULAMA 2
ÖLÇME-DEĞERLENDİRME 8. SINIF
KORELASYON KATSAYISI B. Ü. Tıp Fakültesi Biyoistatistik Anabilim Dalı Dr. Ayşe Canan Yazıcı.
TEORİK DAĞILIMLAR.
TARIM EKONOMİSİ İSTATİSTİĞİ
OLASILIK DAĞILIMLARI Bu kısımda teorik olasılık dağılımları incelenecektir. Gerçek hayatta birçok olayın dağılımı bu kısımda inceleyeceğimiz çeşitli olasılık.
Temel İstatistik Terimler
Sunum transkripti:

BİYOİSTATİSTİK UYGULAMA II

Örnek 1 Bir doğum kliniğinde son bir yıl içerisinde doğan 1000 bebeğin ağırlıkları, 3100 gr ortalama ve 300 gr standart sapma ile normal dağılım göstermektedir. Doğum ağırlığı 2500 gr’ın altında olan bebek sayısı nedir? Doğum ağrılığı 2500-3500gr arasında olan bebek sayısı nedir?

a) P(x2500)=? P(x2500) P(z  ? ) 3100(µ) 2500 P(z  -2 )=?

Doğum ağırlığı 2500 gr’ın altında olan bebek sayısı: P(x2500)=P(z-2)=? Standart Normal Dağılım Tablosu kullanarak: -2 0,4772 Son bir yıl içerisinden doğan bir bebeğin kilosunun 2500 gr’ın altında olması olasılığı % 2,28’dir. Doğum ağırlığı 2500 gr’ın altında olan bebek sayısı: 1000 x 0,0228  23 bebek

b) P(2500  x3500)=? P( -2  z 1,33) 0,4082 0,4772 -2 1,33 P( -2  z 1,33)=0,4477+0,4082=0,8854 Bebeklerin %88,54’ünün ağırlığı 2500 gr ile 3500 gr arasında değişmektedir. Doğum ağırlığı 2500 gr ile 3500 gr arasında olan bebek sayısı: 1000 x 0,8854 885 bebek.

Örnek 2 Bir bölgedeki acil servis çağrı merkezine gelen çağrıların günde ortalama 3 çağrı ile poisson dağılımı gösterdiği bilinmektedir. a) Günde 2’den fazla çağrı gelmesi olasılığı nedir? b) En çok 3 çağrı gelmesi olasılığı nedir? c) Hiç çağrı gelmemesi olasılığı nedir?

a)

b) En çok 3 çağrı gelmesi olasılığı nedir?

c) Hiç çağrı gelmemesi olasılığı nedir?