MATEMATİK DERSİ KONU : DENKLEM ÇÖZME SEMİH YAŞAR 140440750.

Slides:



Advertisements
Benzer bir sunumlar
POLİNOMLAR TANIM: P(x)=anxn+an-1xn a2x2+a1x+a0 biçimindeki ifadelere reel katsayılı bir bilinmeyenli polinom denir. anxn, an-1xn-1, ... , a1x+a0.
Advertisements

KARMA Ş IK SAYILAR Derse giriş için tıklayın... A. Tanım A. Tanım B. i nin Kuvvetleri B. i nin Kuvvetleri C. İki Karmaşık Sayının Eşitliği C. İki Karmaşık.
KARMAŞIK SAYILAR.
TAM SAYILAR.
Prof.Dr.Şaban EREN Yasar Üniversitesi Fen-Edebiyat Fakültesi
EŞİTLİK VE DENKLEMLER.
Birinci Dereceden Denklemler
FONKSİYONLAR ve GRAFİKLER
ÖZDEŞLİK 8.Sınıf b x x b a y a y a Aşağı yön tuşu ile ilerleyiniz.
Batuhan Özer 10 - H 292.
Bir eşitliğin her iki yanına aynı sayıyı eklersek eşitlik bozulmaz.
BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER
1.Dereceden 1 Bilinmeyenli Denklemler
DENKLEM.
Projemizin İçeriği: Anahtarlanmış Doğrusal Sistemler
2.DERECE DENKLEMLER TANIM:
Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü
MATRİS-DETERMİNANT MATEMATİK.
MATEMATİK ÖĞRENEBİLİR
DOĞRU GRAFİKLERİ EĞİM.
EŞİTSİZLİK GRAFİKLERİ
BİRİNCİ DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER
Ders : MATEMATİK Sınıf : 8.SINIF
Diferansiyel Denklemler
DENKLEMLER. DENKLEMLER ÜNİTE BAŞLIĞI X kimdir neye denir,neden gereksinim duyulmuştur.Bilinmeyeni denklem kurmada kullanırız.Bilinmeyen problemlerde.
Birinci Dereceden Denklemler
ÜSLÜ SAYILAR ileri.
İLKÖĞRETİM MATEMATİK 7.SINIF
DERSİMİZİ ŞU ANA BAŞLIKLAR HALİNDE İNCELEYECEĞİZ.
DOĞRUSAL DENKLEM SİSTEMLERİ ve MATRİSLER
MATEMATİK ÖĞRENEBİLİR
Lineer Denklem Çözümü: Gauss Elemesi
EŞİTLİK ve DENKLEM.
ÖZDEŞLİK b x x b a y a y a 8.Sınıf Aşağı yön tuşu ile ilerleyiniz.
DOĞRUSAL DENKLEM SİSTEMLERİNİN GRAFİK İLE ÇÖZÜMÜ
KARTEZYEN ÇARPIM Sıralı İkili İki Kümenin Kartezyen Çarpımı
BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER
DOĞRUSAL DENKLEMLER Tuba TIRAŞOĞLU
İKİNCİ DERECEDEN DENKLEMLER
İLKÖĞRETİM MATEMATİK 6.SINIF
MATEMATİK 1 POLİNOMLAR.
DOĞRUSAL EŞİTSİZLİK SİSTEMLERİ
Yrd. Doç. Dr. Mustafa AKKOL
İSMAİL EKSİKLİ Öğr. No:
Çarpanlara Ayırma.
KARMAŞIK SAYILAR.
BİR BİLİNMEYENLİ RASYONEL DENKLEMLER
KARMAŞIK SAYILAR.
ÇEMBERİN ANALİTİK İNCELENMESİ
İLKÖĞRETİM MATEMATİK 8.SINIF
CEBİR CEBİRSEL İFADELER Cebirsel ifadelerde toplama ve çıkarma işlemi
MATEMATİK EŞİTSİZLİKLER.
MATEMATİK Karmaşık Sayılar.
Diferansiyel Denklemler
MATEMATİK DENKLEMLER.
Denklemeler içerdiği değişkenin sayısına ve kuvvetine göre sınıflandırılır. Aşağıdaki örneklere bakarsak; 2x+4=15I. Dereceden I Bilinmeyenli Denklem x.
İKİNCİ DERECEDEN DENKLEMLER
Yeşilköy Anadolu Lisesi. TANıM (KONUYA GIRIŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden.
Lineer Vektör Uzayı ‘de iki
ÜSLÜ SAYILAR.
Ders : MATEMATİK Sınıf : 8.SINIF
BİRİNCİ DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER
EŞİTSİZLİK AKSİYOMLARI
NİŞANTAŞI ÜNİVERSİTESİ
DERSİMİZİ ŞU ANA BAŞLIKLAR HALİNDE İNCELEYECEĞİZ.
EŞİTSİZLİKLER ÖMER ASKERDEN UZMAN İLKÖĞRETİM MATEMATİK ÖĞRETMENİ
DERSİMİZİ ŞU ANA BAŞLIKLAR HALİNDE İNCELEYECEĞİZ.
..Denklemler..
DERSİMİZİ ŞU ANA BAŞLIKLAR HALİNDE İNCELEYECEĞİZ.
Sunum transkripti:

MATEMATİK DERSİ KONU : DENKLEM ÇÖZME SEMİH YAŞAR 140440750

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER BİRİNCİ DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER A. TANIM a ve b gerçel (reel) sayılar ve a 0 olmak üzere, ax + b = 0 eşitliğine birinci dereceden bir bilinmeyenli denklem denir . Bu denklemi sağlayan x değerlerine denklemin kökü, denklemin kökünün oluşturduğu kümeye denklemin çözüm kümesi denir.

B. EŞİTLİĞİN ÖZELİKLERİ Denklem çözümünde aşağıdaki özeliklerden yararlanırız. Bir eşitliğin her iki tarafına aynı sayı ilave edilirse eşitlik bozulmaz. a = b ise, a + c = b + c dir. Bir eşitliğin her iki tarafından aynı sayı çıkarılırsa eşitlik bozulmaz.

a = b ise, a – c = b – c dir. Bir eşitliğin her iki tarafı aynı sayı ile çarpılırsa eşitlik bozulmaz. a = b ise, a × c = b × c dir. Bir eşitliğin her iki tarafı sıfırdan farklı aynı sayı ile bölünürse eşitlik bozulmaz.

Bir eşitliğin her iki tarafının n. kuvveti alınırsa eşitlik bozulmaz. a = b ise, an = bn dir. (a = b ve b = c) ise, a = c dir. (a = b ve c = d) ise, a ± c = b ± d dir. (a = b ve c = d) ise, a × c = b × d dir.

a × b = 0 ise, (a = 0 veya b = 0) dır. a × b ¹ 0 ise, (a ¹ 0 ve b ¹ 0) dır. 

C. ax + b = 0 DENKLEMİNİN ÇÖZÜM KÜMESİ a ¹ 0 olmak üzere, (a = 0 ve b = 0) ise, ax + b = 0 denklemini bütün sayılar sağlar. Buna göre, reel (gerçel) sayılarda çözüm kümesi dir. (a = 0 ve b ¹ 0) ise, ax + b = 0 denklemini sağlayan hiçbir sayı yoktur. Yani, Ç = Æ dir.

BİRİNCİ DERECEDEN İKİ BİLİNMEYENLİ DENKLEM SİSTEMİ a, b, c , a ¹ 0 ve b ¹ 0 olmak üzere, ax + by + c = 0 denklemine birinci dereceden iki bilinmeyenli denklem denir.

Bu denklem düzlemde bir doğru belirtir Bu denklem düzlemde bir doğru belirtir. Doğru üzerindeki bütün noktaların oluşturduğu ikililer denklemin çözüm kümesidir. Buna göre, ax + by + c = 0 denkleminin çözüm kümesi birçok ikiliden oluşur.

Çözüm Kümesinin Bulunması Birinci dereceden iki bilinmeyenli denklem sistemlerinin çözüm kümesi; yok etme yöntemi, yerine koyma yöntemi, karşılaştırma yöntemi, grafik yöntemi, determinant yöntemi gibi yöntemlerden biri ile yapılır. a. Yok Etme Yöntemi: Değişkenlerden biri yok edilecek biçimde verilen denklem sistemi düzenlenir ve taraf tarafa toplanır. Taraf tarafa toplandığında veya çıkarıldığında (ya da bir düzenlemeden sonra) değişkenlerden biri sadeleşiyorsa “Yok etme yöntemi” kolaylık sağlar.

a. Yok Etme Yöntemi: Değişkenlerden biri yok edilecek biçimde verilen denklem sistemi düzenlenir ve taraf tarafa toplanır. Taraf tarafa toplandığında veya çıkarıldığında (ya da bir düzenlemeden sonra) değişkenlerden biri sadeleşiyorsa “Yok etme yöntemi” kolaylık sağlar.

b. Yerine Koyma Yöntemi: Verilen denklemlerin birinden, değişkenlerden biri çekilip diğer denklemde yerine yazılarak sonuca gidilir. Denklemlerin birinden, değişkenlerden biri kolayca çekilebiliyorsa, “Yerine koyma yöntemi” kolaylık sağlar.

ÖRNEK: 3x + 10 = 25 işlemini yapalım ÖRNEK: 3x + 10 = 25 işlemini yapalım. Bilinmeyeni yalnız bırakmak için +10 karşıya -10 olarak gönderilir. 3x = 25 - 10 3x = 15 x ‘ in başındaki çarpım durumundaki 3'ü karşıya bölüm olarak göndeririz. x = 15/3 x = 5