EGEE-III INFSO-RI-222667 Enabling Grids for E-sciencE www.eu-egee.org EGEE and gLite are registered trademarks Giriş ve Motivasyon Onur Temizsoylu BAŞARIM09.

Slides:



Advertisements
Benzer bir sunumlar
8. SINIF 3. ÜNİTE BİLGİ YARIŞMASI
Advertisements

PARALEL HESAPLAMA ŞEYMA ŞAFAK
Sinan Doğan, Esra Beyoğlu
Bilgisayar İşletmenliği
NOKTA, DOĞRU, DOĞRU PARÇASI, IŞIN, DÜZLEMDEKİ DOĞRULAR
Eğitim Programı Kurulum Aşamaları E. Savaş Başcı ASO 1. ORGANİZE SANAYİ BÖLGESİ AVRUPA BİLGİSAYAR YERKİNLİĞİ SERTİFİKASI EĞİTİM PROJESİ (OBİYEP)
İNTERNET.
İNTERNET.
Bilgi Teknolojisinin Temel Kavramları
Veri ve Veri Yapıları Genel olarak bilgisayarlar.
Prof. Dr. Eşref ADALI Yrd. Doç. Dr. Şule Gündüz Öğüdücü Sürüm-A
2. ULUSAL GRİD ÇALIŞTAYI, 1-2 Mart 2007, TÜBİTAK, ANKARA Peter Kacsuk’un sunumundan alıntılarla P-GRADE Portalı Cevat Şener Bilgisayar Mühendisliği Bölümü,
1/27 GEOMETRİ (Kare) Aşağıdaki şekillerden hangisi karedir? AB C D.
Dağıtık Simülasyon Sistemlerinde Sanal Global Zaman Hesaplamaları
Bölüm 1: Introductions (Tanıtım,Tanım)
Bilgi Teknolojisinin Temel Kavramları
CLUSTER COMPUTİNG (KÜME HESAPLAMA )
Dağıtık Ortak Hafızalı Çoklu Mikroişlemcilere Sahip Optik Tabanlı Mimari Üzerinde Dizin Protokollerinin Başarım Çözümlemesi I. Ulusal Yüksek Başarım ve.
SOME-Bus Mimarisi Üzerinde Mesaj Geçişi Protokolünün Başarımını Artırmaya Yönelik Bir Algoritma Çiğdem İNAN, M. Fatih AKAY Çukurova Üniversitesi Bilgisayar.
Bilgisayar Donanımı Dersi
EGEE-II INFSO-RI Enabling Grids for E-sciencE EGEE and gLite are registered trademarks Paralel Hesaplama Onur Temizsoylu Grid ve.
Bölüm 3 – Yapısal Programlama
TR-Grid Servisleri I. Ulusal Yüksek Başarım ve Grid Konferansı Nisan 2009, ODTÜ, Ankara Bu sunum.
EGEE-II INFSO-RI Enabling Grids for E-sciencE EGEE and gLite are registered trademarks Küme Bilgisayarlar Onur Temizsoylu Grid ve.
Yapısal Program Geliştirme – if, if-else
Grid Nedir? Cevat Şener BMB-ODTÜ
İŞLETİM SİSTEMLERİ EYLÜL 2012.
BİLGİ TEKNOLOJİSİNİN TEMEL KAVRAMLARI
Intel Pentium II Mikroişlemcisi
Matematik 2 Örüntü Alıştırmaları.
Grid Hesaplaması Özgür Erbaş GRID Kullanıcı Eğitimi Boğaziçi Üniversitesi 2007, İstanbul.
Açık Dergi Sistemleri orçun madran. Open Journal Systems (OJS) Web 2.0 Teknolojileri ve Uygulamaları Çalıştayı, Ankara - 4 Aralık
Intel P6 Architecture Mustafa Çayır.
MPI İle Paralel Programlama Tunahan Altıntop
Yazılım Gelişimi. Donanım gelişimine paralel olarak süren yazılım gelişimi, son on yılda kayda değer bir ivmelenme ile bilgisayarları, herhangi bir uzmanlık.
BBY 302 Bilgi Teknolojisi ve Yönetimi Bilgi Teknolojileri Altyapısı
HABTEKUS' HABTEKUS'08 3.
İŞLETİM SİSTEMLERİ Öğr. Gör. S.Serkan TAN.
Akış Kontrol Mekanizmaları
Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi
Bilgisayar Ağları Emre ÜNSAL Dokuz Eylül Üniversitesi
EYLÜL 2014 İŞLETİM SİSTEMLERİ Bilgisayar Uygulamaları.
İŞLEMCİ MİMARİLERİ – Derya Işık
SÜLEYMAN DEMİREL ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ
Ümran Onay.
1 (2009 OCAK-ARALIK) TAHAKKUK ARTIŞ ORANLARI. 2 VERGİ GELİRLERİ TOPLAMIDA TAHAKKUK ARTIŞ ORANLARI ( OCAK-ARLIK/2009 )
Çocuklar,sayılar arasındaki İlişkiyi fark ettiniz mi?
Toplama Yapalım Hikmet Sırma 1-A sınıfı.
SAYILAR NUMBERS. SAYILAR 77 55 66 99 11 33 88.
Bilişim Teknolojileri Öğretmeni İsmail ÖZTÜRK
1/22 GEOMETRİ (Dikdörtgen) Aşağıdaki şekillerden hangisi dikdörtgendir? AB C D.
Proje Konuları.
Bilgisayarın Gelişimi
1 Öğr. B.Aliyeva Öğr. B.Aliyeva Bilgisayar Yazılımı.
GRİD HESAPLAMA PARALEL HESAPLAMA
Türkiye’de Yüksek Başarımlı Hesaplama Prof. Dr. Cevdet Aykanat Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü.
Programlama Dilleri Visual Basic C# C++ Pascal Delphi.
Bilgi ve İletişim Teknolojisi Dersi
BİL İŞLETİM SİSTEMLERİ
BİLGİSAYAR MİMARİLERİ 12.Hafta: Çok İşlemcili Sistemler
BİLGİSAYAR MİMARİLERİ 1.Hafta: Bilgisayar Mimarisine Giriş
DERS 4 MİKROİŞLEMCİ PROGRAMLAMA. Dr. Emin Argun Oral, Atatürk Üniversitesi 2008 Ders 4, Slayt 2İÇERİK Yüksek seviyeli programlama dilleri Düşük sevyeli.
Genel Kavramlar Bölüm - 1. YAZILIM Bilgisayara işlemler yaptırabilmek ve karar verdirtebilmek için yazılan kalıplara denir. Yazılım, genel olarak donanım.
Sayısal Entegre Devreler
SANALLAŞTIRMA ÇEŞİTLERİ VE YAZILIMLARI
PARALEL HESAPLAMA Dr. Ali Evren Göksungur.
BİLGİSAYAR NEDİR?.
ANKARA ÜNİVERSİTESİ SAĞLIK BİLİMLERİ FAKÜLTESİ SOSYAL HİZMET BÖLÜMÜ
MALTEPE ÜNİVERSİTESİ Paralel Hesaplama MATLAB ve Paralel Hesaplama
BİLGİSAYAR MÜHENDİSLİĞİNE GİRİŞ
Sunum transkripti:

EGEE-III INFSO-RI Enabling Grids for E-sciencE EGEE and gLite are registered trademarks Giriş ve Motivasyon Onur Temizsoylu BAŞARIM09 ODTÜ, Ankara

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan İçerik –Neden paralel hesaplama? –Terminoloji –Paralel hesaplamanın tarihi –Teori:  Hızlanma, Amdahl Yasası  Sınıflandırma –Yönetim Modelleri –Programlama Modelleri –Paralel Donanım Mimarileri –Paralel Uygulamalar –Örnek Problemler

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Neden Paralel Hesaplama –Hesaplama ihtiyaçları, gün geçtikçe artmaktadır. Daha yüksek frekanslı sensörler, görselleştirme kalitesinin artması, dağıtık veri tabanları buna birer örnektir. –Diğer taraftan işlemci teknolojisi fiziksel limitlerine (termodinamik, ışık hızı, CMOS transistörler) yaklaşmaktadır. –Paralel hesaplama, daha hızlı sonuç almak için bir uygulamaya ait program parçalarının birden fazla işlemcide aynı anda çalıştırılmasıdır. –Ağ teknolojilerindeki hızlı gelişmeler paralel hesaplama için kolay edinilebilir ve ulaşılabilir donanımlara izin vermektedir.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Moore Yasası (?) –Intel’in kurucularından Gordon E. Moore tarafından ortaya atılmıştır. –“Mikroişlemciler içindeki transistör sayısı her iki yılda bir iki katına çıkacaktır.” –Buna bağlı olarak işlemci hızlarının da iki katına çıkması beklenmektedir. –Ucuz CMOS transistörlerle üretim, 2008 yılı içinde 45nm üretim teknolojisi bile kullanılsa da hız artışının sonu gelmektedir. –Intel, çok çekirdekli işlemciler ile Moore yasasını geçerli kılmaya çalışmaktadır.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Butters Yasası –Ağ dünyasında ise Gerald Butters her dokuz ayda tek bir fiber kablodan geçebilecek veri miktarının iki katına çıktığını öne sürmüştür. –Özellikle WDM teknolojisi ile optik kablolar üzerinden transfer edilebilecek veri miktarı artmaktadır. –İşlemcilerden farklı olarak farklı dalga boylarında çalışan lazer ışığı kullanıcı farkında olmadan birleştirilmektedir. –Lokal ve geniş ağlardaki hızlı teknoloji değişimi ile paralel hesaplama için küme bilgisayarlar, grid hesaplama gibi yöntem ve mimariler ortaya çıkmıştır.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Terminoloji –Süreç (“Process”) –İş Parçacığı (“Thread”) –Görev (“Task”) –Hızlanma (“Speedup”) –Ölçeklenebilirlik (“Scalability”) –Verimlilik –Senkronizasyon (“Synchronization”) –Paralel Ek Yükü (“Parallel Overhead”) –Süperbilgisayar

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Paralel Hesaplamanın Tarihi 1942Atanasoff–Berry Computer (ABC)30 OPS 1946UPenn ENIAC100 kOPS 1960UNIVAC LARC150 kFLOPS 1976CRAY-1250 MFLOPS 1995CRAY T3E> 1 TFLOPS 1997Intel ASCI Red1.3 TFLOPS 2004IBM Blue Gene/L280 TFLOPS 2008IBM Roadrunner1105 TFLOPS

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Paralel Hesaplamanın Tarihi –TOP500 Listesine göre son 15 sene içinde süperbilgisayar sistemlerinde mimari değişimi

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Paralelleştirme –Bir işin paralelleştirilmesinde programın toplam çalışma zamanını azaltmak amaçlanır.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Paralelleştirme Ek Yükü –Ek yük:  İşlemcilerde fazladan geçen süre  İletişim ek yükü  Senkronizasyon ek yükü  Programın paralel olmayan/ olamayan parçaları –Paralel programlamada ek yük ve çalışma zamanı hızlanma ve verimlilik ile ifade edilir. Çalışma Zamanı İşlemci Zamanı Haberleşme Ek Yükü 1 işlemci 2 işlemci 4 işlemci 8 işlemci Çalışma Zamanında Azalma

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Hızlanma ve Verimlilik –İ sayıda işlemcide programın toplam işlemci zamanını Z(i) olarak ifade edelim. Hızlanma (i) = Z(1) / Z(i) Verimlilik (i) = Hızlanma (i) / i –İdeal durumda: Z (i) = Z (1) / i Hızlanma (i) = i Verimlilik (i) = 1 –Ölçeklenebilir programlar büyük işlemci sayılarında bile verimli kalırlar. Hızlanma İşlemci Sayısı ideal Süper-lineer Saturasyon Felaket Verimlilik İşlemci Sayısı 1

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Amdahl Yasası –Amdahl yasası:  “Kodun paralel olmayan kısmı (ek yük), kodun ölçeklenebilirliği konusunda üst limiti oluşturur.” –Kodun seri kısmını s, paralel kısmını p olarak ifade edersek: 1= s + p Z (1)= Z (s) + Z (p) = Z (1) * (s + p) = Z (1) * (p + (1-p)) Z (i)= Z (1) * (p/i + (1-p)) Hızlanma (i)= Z (1) / Z (i) = 1 / (p/i + 1 – p) Hızlanma (i) < 1 / (1 - p)

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Pratikte –Pratikte programları paralelleştirmek Amdahl yasasında görüldüğü kadar zor değildir. –Ancak programın çok büyük bir kısmını paralel işlem için harcaması gereklidir. Hızlanma Kodda Paralel Kısım 0%20%40%100%60%80% s 1980s 1990s En iyi paralel kodlar ~99% diliminde P=2 P=4 P=8 David J. Kuck, Hugh Performance Computing, Oxford Univ.. Press 1996

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Coarse/Fine Grained Paralel –Fine-Grained:  Genelde her döngüde paralelleştirme vardır.  Çok sayıda döngü paralleleştirilir.  Kodun çok iyi bilinmesine gerek yoktur.  Çok fazla senkronizasyon noktası vardır. –Coarse-Grained:  Geniş döngülerle paralleştirme yapılır.  Daha az senkronizasyon noktası vardır.  Kodun iyi anlaşılması gerekir. Ana Program A B C D F E G H I J KLM NO pq rs t Coarse-grained Fine-grained

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Ölçeklenebilirlik –Ölçeklenebilirliği etkileyen diğer faktörler:  İş parçacıkları arası yük dengesizliği : Bir kodun herhangi bir paralel kısmının çalışma zamanı en uzun süren iş parçacığının çalışma zamanıdır. Coarse-Grained programlamada ortaya çıkması daha olasıdır.  Çok fazla senkronizasyon: Kodda küçük döngüler sırasında her seferinde senkronizasyon yapılırsa bu ek yük getirir. Fine-Grained programlamada ortaya çıkması daha olasıdır. Çalışma Zamanı i0i0 i1i1 i2i2 i3i3 başlangıçbitiş

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Flynn Sınıflandırması –Michael J. Flynn paralel bilgisayar mimarilerini komut ve veri akışlarına göre sınıflandırmıştır:  SISD (Single Instruction, Single Data) PCler, iş istasyonları  SIMD (Single Instruction, Multiple Data) Vektör makineler, Intel SSE  MISD (Multiple Instruction, Single Data) Çok fazla örneği yok  MIMD (Multiple Instruction, Multiple Data) SGI sunucular, küme bilgisayarlar

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan SISD İşlemci Veri Girişi Veri Çıkışı Komutlar

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan MISD Girdi Verisi Çıktı Verisi İşlemci A İşlemci B İşlemci C Komut Akışı A Komut Akışı B Komut Akışı C

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan SIMD Komut Akışı İşlemci A İşlemci B İşlemci C Girdi Akışı A Girdi Akışı B Girdi Akışı C Çıktı Akışı A Çıktı Akışı B Çıktı Akışı C

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan MIMD İşlemci A İşlemci B İşlemci C Girdi Akışı A Girdi Akışı B Girdi Akışı C Çıktı Akışı A Çıktı Akışı B Çıktı Akışı C Komut Akışı A Komut Akışı B Komut Akışı C

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Ortak Bellek MIMD BELLEKBELLEK YOLUYOLU BELLEKBELLEK YOLUYOLU Bellek İşlemci A İşlemci A İşlemci B İşlemci B İşlemci C İşlemci C BELLEKBELLEK YOLUYOLU

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Dağıtık Bellek MIMD BELLEKBELLEK YOLUYOLU İşlemci A İşlemci A İşlemci B İşlemci B İşlemci C İşlemci C BELLEKBELLEK YOLUYOLU BELLEKBELLEK YOLUYOLU BELLEK A BELLEK A BELLEK B BELLEK B BELLEK C BELLEK C IPC Kanalı IPC Kanalı

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Terminoloji - II –Son senelerde ağ hızındaki önemli artış ve çoklu çekirdekli işlemcilerin kullanılmaya başlaması ile paralel hesaplama konusunda birçok terminoloji karışıklığı olmaya başlamıştır. MPP, küme bilgisayarlarla hesaplama, dağıtık hesaplama, grid hesaplama... –Paralel hesaplamada yaygın kullanılan terimlerden bazıları şunlardır:  Multiprocessing: İki veya daha fazla işlemcinin aynı bilgisayar sistemi içinde kullanılmasıdır.  Dağıtık hesaplama: Ağ üzerinden iki veya daha fazla bilgisayar üzerinde aynı anda belli bir programa ait parçaların çalıştırıldığı hesaplama.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Paralel Programlama Modelleri Ortak Hafıza Modelleri –Dağıtık Ortak Bellek –Posix Threads –OpenMP –Java Threads (HKU JESSICA, IBM cJVM) Mesaj Tabanlı Modeller –PVM –MPI Hibrid Modeller –Ortak ve dağıtık hafızayı birlikte kullananlar –OpenMP ve MPI birlikte kullananlar Nesne ve Servis Tabanlı Modeller –Geniş alanda dağıtık hesaplama teknolojileri  Nesne: CORBA, DCOM  Servis: Web servisleri tabanlı Bilimsel araştırma projelerinde sıklıkla  Derleyici tarafından paralelleştirilen ortak bellek tabanlı programlar  MPI gibi mesaj paylaşımı tabanlı programlar kullanılmaktadır. Belirli bir programlama modelinin seçimi, genellikle uygulama gereksinimi, kişisel tercih veya donanımla ilgilidir. Ortak hafızaya sahip makineler, hem OpenMP gibi SMP hem de MPI gibi mesaj paylaşımı tabanlı modelleri çalıştırabilirler.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan  sayısını OpenMP ile hesaplamak  = =  (1+x 2 ) dx 0<i<N 4 N(1+((i+0.5)/N) 2 ) #define n main() { double pi, l, ls = 0.0, w = 1.0/n; int i; #pragma omp parallel private(i,l) reduction(+:ls) { #pragma omp for for(i=0; i<n; i++) { l = (i+0.5)*w; ls += 4.0/(1.0+l*l); } #pragma omp master printf(“pi is %f\n”,ls*w); #pragma omp end master } Seri programlama şeklinde yazılıyor Otomatik yük dağılımı yapılıyor. Bütün değişkenler paylaşılıyor.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan  sayısını MPI ile hesaplamak  = =  (1+x 2 ) dx 0<i<N 4 N(1+((i+0.5)/N) 2 ) #include #define N main() { double pi, l, ls = 0.0, w = 1.0/N; int i, mid, nth; MPI_init(&argc, &argv); MPI_comm_rank(MPI_COMM_WORLD,&mid); MPI_comm_size(MPI_COMM_WORLD,&nth); for(i=mid; i<N; i += nth) { l = (i+0.5)*w; ls += 4.0/(1.0+l*l); } MPI_reduce(&ls,&pi,1,MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD); if(mid == 0) printf(“pi is %f\n”,pi*w); MPI_finalize(); } Önce iş parçacıkları belirleniyor Bütün değişkenler sürece özel kalıyor. Uygulama dışında yük dağılımı ve veri paylaşımı yapılıyor.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Paralel Uygulamalarda Bağlantı –Sıkı bağlı sistemler:  Süreçler arasında yoğun haberleşme  Gecikme süresine hassas  Ortak Bellek Paralel  Dağıtık Bellek Paralel

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Paralel Uygulamalarda Bağlantı –Gevşek bağlı sistemler:  Süreçler arasında haberleşme azdır veya hiç yoktur.  Gecikme süresine hassas değillerdir. Ancak bant genişliği veri transferi için etkili olabilir. –Parametrik çalışan uygulamalar  Süreçler arasında haberleşme yoktur.  Kümelerde, grid altyapılarında çalışan uygulamaların çoğunluğunu oluştururlar.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Paralel Donanım Mimarileri –SMP makineler –MPP makineler –NUMA makineler –Superscalar işlemciler –Vektör makineler –Küme bilgisayarlar

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan SMP –SMP, birden fazla eş işlemcinin ortak bir belleğe bağlandığı çok işlemcili bir bilgisayar mimarisidir. –SMP sistemler, görevleri işlemciler arasında paylaşabilirler. –SMP sistemler, paralel hesaplama için kullanılan en eski sistemlerdir ve hesaplamalı bilimlerde yoğun bir şekilde kullanılırlar.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan MPP –MPP, binlerce işlemci kullanılabilen çok işlemcili bir mimaridir. –Bir MPP sisteminde her işlemci kendi belleğine ve işletim sistemi kopyasına sahiptir. –MPP sistemler üzerinde çalışacak uygulamalar eş zamanda çalışacak eş parçalara bölünebilmelidirler. –MPP sistemlere yeni işlemci ekledikten sonra uygulamalar yeni paralel kısımlara bölünmelidirler. SMP sistemler ise bundan çok iş parçacığı çalıştırabilir yapıları sayesinde hemen faydalanırlar.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan NUMA –NUMA, çok işlemcili makinelerde bellek erişim zamanının bellek yerine göre değiştiği bir bellek tasarımıdır. –İlk defa 1990’larda ortaya çıkmıştır. –Modern işlemciler, belleklere hızlı bir şekilde erişmeye ihtiyaç duyarlar. NUMA, istenen verinin “cache” bellekte bulunamaması, belleğin başka işlemci tarafından kullanılması gibi performans sorunlarını her işlemciye bellek vererek aşar. –Intel Itanium, AMD Opteron işlemciler ccNUMA tabanlıdır.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Superscalar İşlemciler –1998 senesinden beri üretilen bütün genel amaçlı işlemciler “superscalar” işlemcilerdir. –“Superscalar” işlemci mimarisi, tek bir işlemcide makine kodu seviyesinde paralellik sağlar. –“Superscalar” bir işlemci tek bir basamakta birden fazla işlem yapar.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Vektör Makineler –Vektör işlemciler, aynı anda birden fazla veri üstünde matematik işlem yapabilen işlemcilerdir. –Şu anda süperbilgisayar dünyasında vektör işlemciler çok az kullanılmaktadırlar. –Ancak bugün çoğu işlemci vektör işleme komutları içermektedirler (Intel SSE). –Vektör işlemciler, aynı matematiksel komutu farklı veriler üzerinde defalarca çalıştırmak yerine bütün veri yığınını alıp aynı işlemi yapabilirler.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Küme Bilgisayarlar –Hesaplamada küme bilgisayar kullanımı 1994 senesinde NASA’da Beowulf projesi ile başlamıştır. 16 Intel 486 DX4 işlemci ethernet ile bağlanmıştır. –Yüksek performanslı hesaplama, artık küme bilgisayarlarla hesaplama halini almıştır. –Küme bilgisayar, birlikte çalışmak üzere bağlanmış birden fazla sunucudan oluşur. –En önemli dezavantajı kullanıcıya tek sistem arayüzü sunamamasıdır.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Neden kümeleme? –Fiyat / performans –Standardı oturmuş işletim sistemi, mesajlaşma gibi yazılım katmanları (Linux, MPI, OpenIB) –Genişleyebilir, standardı oturmuş bağlantı teknolojileri (Gigabit Ethernet, Infiniband, 10 Gigabit Ethernet) –Son senelerde süperbilgisayarların büyük bir kısmı küme bilgisayarlardan oluşmaktadır:

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Kümeleme nedir? –Kümeleme iki veya daha fazla bilgisayarı:  Uygulama veya servis kullanılabilirliğini arttırmak için,  Yük dengelemek için,  Dağıtık ve yüksek başarımlı hesaplama için ağ ile birleştirmektir. –Kümeleme değişik sistem katmanlarında gerçekleştirilebilir:  Depolama: Paylaşılmış disk, ikizlenmiş disk, paylaşılmayan veri  İşletim Sistemi: UNIX/Linux kümeleri, Microsoft (?) kümeleri  Uygulama Programlama Arayüzü: PVM, MPI  Uygulamalar

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Dezavantajları –Küme bilgisayarların önemli mimari dezavantajları vardır:  Ortak bellek yoktur.  İletişim bellek okuma/yazma hızına göre yavaştır. –Bu kısıtlamalar uygulama için önemlidir. Uygulamanın bunlara göre de geliştirilmesi gerekebilir. –Güç ve klima için genelde daha fazla miktarda bütçe gerekir. –Ölçeklenebilirlik yakalamak bazı uygulamalar için zordur.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan HA – Yüksek Kullanılabilirlik Kümeleri –HA kümeleri, servislerin ayakta kalma sürelerini arttırmak içindir. –Aynı servisin birden fazla kopyası çevrimiçi veya çevrimdışı bekletilir. Serviste bir sorun olduğu zaman devreye alınır. –Linux-HA projesi, sıklıkla bu amaçla kullanılan bir yazılımdır.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Yük Dengeleme için Kümeleme –Yük dengeleme kümeleri, ön arayüzden gelen bütün iş yükünü karşılayıp arkadaki sunuculara aktarırlar. –Bu kümeler, sunucu çiftliği olarakta adlandırılırlar. –LSF, MAUI, Sun Grid Engine gibi birçok yük dengeleyici yazılım vardır. –“Linux Virtual Server” projesi de oldukça sık kullanılan bir yük dengeleyici çözümüdür.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Veritabanı Kümeleri –Son senelerde birçok veritabanı üreticisi, yüksek kullanılabilirlik, genişleyebilirlik ve yüksek başarımlılık için kümeleme teknolojisini için ürün çıkarmıştır. –Bu çözümlerin bir kısmı paylaştırılmış disk alanı, bir kısmı ayrık veri alanları ile çözüm sunmaktadır.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan YBH Kümeleri –Bu kümeler, zaman kritik paralel, seri veya parametrik hesaplama işlerini çalıştırmak için kullanılır. –Normal bir bilgisayarda inanılmaz sürede bitebilecek işlemci kritik uygulamaları çalıştırırlar. –Genellikle normal PC veya sunucular ve Linux ile oluşturulan kümeler Beowulf ismini alırlar. –MPI, YBH kümelerinde en çok tercih edilen haberleşme kütüphanesidir.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan YBH Küme Mimarileri –Yüksek başarımlı hesaplama ihtiyacını karşılamak isteyen bir kullanıcının önünde iki seçenek vardır:  Uygulamasına göre küme bilgisayarı edinmek.  Erişebildiği küme bilgisayarın özelliklerine göre uygulamasını geliştirmek, değiştirmek veya optimize etmek. –Her iki durumda da bilinmesi veya hesaplanması gerekenler:  Uygulamanın özellikleri, gereksinimleri (yüksek bellek, her sunucuda yüksek miktarda geçici disk alanı, özel kütüphaneler...),  Kümenin büyüklüğü (işlemci, bellek, disk),  Ağ bağlantı biçimi (gigabit ethernet, infiniband),  İşletim sistemi (Linux, Microsoft (?)...),  Birçok kullanıcı veya grubun birlikte çalışabilirliği,  Derleyiciler (GNU, Intel, Portland Group...)

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan 2009 Mimari

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Sunucular –Günümüzde 1U boyutta 16 çekirdekli sunucular almak mümkün olmaktadır. –Küme bilgisayarlarda sunucu seçimi konusunda birçok faktör vardır:  İşlemciler : Tek çekirdek, çok çekirdek, çoklu işlemci soketi...  Anakart : PCI-X, PCI-Express, HyperTransport...  Sunucu form faktörü : Blade, rack monte, PC...  Bellek : Boyutu, DDR-2, DDR-3, FBDIMM …  Disk : Boyutu, SATA, SCSI, SAS …  Ağ bileşenleri : Gigabit Ethernet, Infiniband, Quadrics...

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Bileşenlerin bant genişliği SATA MB/s PC GB/s Infiniband DDR 4x 2 GB/s

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Gecikme Süreleri

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Ağ Bağlantısı –Genellikle tek bir kümede birden fazla ağ bulunur:  Kullanıcı ağı: İş göndermek, görselleştirme, sonuç görüntüleme için kullanılır. Grid haberleşmesi için de kullanılabilir. Kümelere bağlanmak için genellikle ssh kullanılır.  Yönetim ağı: İş planlamak, sunucuları izlemek, kurmak için kullanılır. Genellikle IP üzerinden çalışırlar. Ganglia gibi yazılımlar multicast çalışırlar.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan IPC Ağı –Küme bilgisayar performansı ve verimi IPC ağı tarafından belirlenir. Haberleşmede harcanan her fazla süre daha az işlem zamanı demektir. –Günümüzde küçük kümeler ve gevşek bağlı uygulamalar için gigabit ethernet ideal bir çözümdür. –Büyük kümeler ve sıkı bağlı uygulamalar için Infiniband, Quadrics gibi çözümler vardır. –Uygulama gereksinimlerini anlamak teknoloji seçiminde çok önemlidir.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Depolama –Küme bilgisayarlarda çalışan kullanıcıların farklı depolama ihtiyaçları bulunur.  Ev dizini, uygulamalar için ortak veri alanı  Yığın veri saklamak için veri ambarları  Yedekleme ve yığın veriler için tape üniteleri  Bazı uygulamalar için sunucularda geçici paylaşılmayan disk alanları –Küme bilgisayarlarda hesaplama yapılan sunucularda kurulum diski veya geçici disk alanı bulundurmak gerekli değildir. Ancak çoğu durumda maliyeti düşüren bu çözüm tercih edilmemektedir. –Uygulama performansı için özellikle paylaşılan disk alanlarının ihtiyaca uygun tasarlanması gerekir.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Dosya Sistemleri –Paralel olmayanlar:  NFS, CIFS –Paralel (“Metadata”)  Lustre : Ölçeklenebilir  Panasas : Ölçeklenebilir –Paralel (“Metadata” olmadan)  XFS  IBM GPFS : Ölçeklenebilir  PVFS  Oracle Cluster FS

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan 2009 Mimari - Yazılım

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan MPI –MPI mesajlaşarak çalışan bir kütüphanedir.  Ne bir dil veya derleyici spesifikasyonudur.  Bir ürüne özel değildir.  Ne de bir işletim sistemi sürücüsüdür. –Çok işlemcili bilgisayar ve kümelerde paralel uygulamaların çalışması için tasarlanmıştır. –Heterojen birçok hesaplama ortamını destekler.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan 2009 Küme Bilgisayarlar - Örnek: Deniz

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan 2009 Örnek: TR-10-ULAKBIM

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Paralel Uygulamalar

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Dünya Simülasyonu Gelişmiş nümerik simülasyon yöntemleri ile sanal bir dünya yaratarak gelecekte dünyanın nasıl görüneceğini hesaplayan bir Japonya’da bir projedir. 40 TFLOPS işlem kapasitesine sahiptir. Toplam 10 TByte belleğe sahiptir. Her birinde 8 vektör işlemci bulunan 640 işlemci ucundan oluşur.

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan TeraGrid NCSA: Compute IntensiveSDSC: Data IntensivePSC: Compute Intensive IA64 Pwr4 EV68 IA32 EV7 IA64 Sun 10 TF IA large memory nodes 230 TB Disk Storage 3 PB Tape Storage GPFS and data mining 4 TF IA-64 DB2, Oracle Servers 500 TB Disk Storage 6 PB Tape Storage 1.1 TF Power4 6 TF EV68 71 TB Storage 0.3 TF EV7 shared-memory 150 TB Storage Server 1.25 TF IA Viz nodes 20 TB Storage 0.4 TF IA-64 IA32 Datawulf 80 TB Storage Extensible Backplane Network LA Hub Chicago Hub IA32 Storage Server Disk Storage Cluster Shared Memory Visualization Cluster LEGEND 30 Gb/s IA64 30 Gb/s Sun ANL: VisualizationCaltech: Data collection analysis 40 Gb/s Backplane Router PSC integrated Q3 03

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Scale > 49 ülkede 269 site ~ işlemci/çekirdek > 680 PB veri alanı > Günde onbinlerce çalışan iş > Yüzden fazla kayıtlı sanal organizasyon EGEE Altyapısı

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan LHC 7’şer TeV’lik enerjiye sahip iki proton demetini çarpıştıracak. En yeni süperiletken teknolojisini kullanarak mutlak sıfırın hemen üstünde – 2710C’de çalışacak., 27 km’lik çevresiyle dünyadaki en büyük süperiletken uygulaması olacak. LHC 2007’de çalışmaya başlayacak Dedektörleri birer saray büyüklüğünde olan dört deney: ALICE ATLAS CMS LHCb LHC

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan Saniyede 40 milyon olay Filtrelemeden sonra saniyede 100 ilginç olay Her olayda bir megabitlik dijital veri = 0.1 Gigabit/s’lik veri kayıt hızı Yılda 1010 olay kaydı = 10 Petabyte/yıllık veri üretimi CMSLHCbATLASALICE 1 Gigabyte (1GB) = 1000MB A DVD filmi 1 Terabyte (1TB) = 1000GB Dünyanın yıllık kitap üretimi 1 Petabyte (1PB) = 1000TB Bir LHC deneyinin yıllık veri üretimi 1 Exabyte (1EB) = 1000 PB Dünyanın yıllık bilgi üretimi LHC Verileri

Enabling Grids for E-sciencE EGEE-III INFSO-RI BAŞARIM09, 18 Nisan