DOĞRUSAL PROGRAMLAMA.

Slides:



Advertisements
Benzer bir sunumlar
el ma 1Erdoğan ÖZTÜRK ma ma 2 Em re 3 E ren 4.
Advertisements

Yrd. Doç. Dr. Mustafa Akkol
FAİZ HESAPLARI ÖMER ASKERDEN PİRİ MEHMET PAŞA ORTAOKULU
Prof.Dr.Şaban EREN Yasar Üniversitesi Fen-Edebiyat Fakültesi
DOĞAL SAYILAR.
T.C. İNÖNÜ ÜNİVERSİTESİ Arapgir Meslek YÜKSEKOKULU
Eğitim Programı Kurulum Aşamaları E. Savaş Başcı ASO 1. ORGANİZE SANAYİ BÖLGESİ AVRUPA BİLGİSAYAR YERKİNLİĞİ SERTİFİKASI EĞİTİM PROJESİ (OBİYEP)
ÜPK FİNAL ÖNCESİ ÇALIŞMA SORULARI
ÖRNEK Giapetto Örneği (Winston 3.1., s. 49)
Atlayarak Sayalım Birer sayalım
BEIER CÜMLE TAMAMLAMA TESTİ
Diferansiyel Denklemler
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ
5) DOĞRUSAL DENKLEM SİSTEMLERİNİN SAYISAL ÇÖZÜMLERİ
ALIŞVERİŞ ALIŞKANLIKLARI ARAŞTIRMASI ÖZET SONUÇLARI Haziran 2001.
DÖNEM SONU İŞLEMLERİ ÜNİTE 4 STOKLAR.
KIR ÇİÇEKLERİM’ E RakamlarImIz Akhisar Koleji 1/A.
MATEMATİKSEL PROGRAMLAMA
Sıvı Ölçüleri Değerlendirme.
PRİMAL-DUAL SİMPLEKS ÖRNEK
HİSTOGRAM OLUŞTURMA VE YORUMLAMA
Soruya geri dön
Prof. Dr. Leyla Küçükahmet
CAN Özel Güvenlik Eğt. Hizmetleri canozelguvenlik.com.tr.
“Dünyada ve Türkiye’de Pamuk Piyasaları ile İlgili Gelişmeler”
1/20 PROBLEMLER A B C D Bir fabrikada kadın ve çocuk toplam 122 işçi çalışmaktadır. Bu fabrikada kadın işçilerin sayısı, çocuk işçilerin sayısının 4 katından.
HAZIRLAYAN:SAVAŞ TURAN AKKOYUNLU İLKÖĞRETİM OKULU 2/D SINIFI
SİMPLEKS YÖNTEM.
ÖRNEKLEM VE ÖRNEKLEME Dr.A.Tevfik SÜNTER.
ASAL SAYILAR VE ÇARPANLARINA AYIRMA
EBOB EKOK.
1/20 BÖLME İŞLEMİ A B C D : 4 işleminde, bölüm kaçtır?
TÜRKİYE KAMU HASTANELERİ KURUMU
1 YASED BAROMETRE 18 MART 2008 İSTANBUL.
İL KOORDİNASYON KURULU I.NCİ DÖNEM TOPLANTISI
İmalat Yöntemleri Teyfik Demir
MATRİSLER ve DETERMİNANTLAR
PARAMETRİK VE HEDEF PROGRAMLAMA
DOĞRUSAL PROĞRAMLAMA Yavuz DEMIRDOGEN.
TBF - Genel Matematik I DERS – 8 : Grafik Çizimi
Tam sayılarda bölme ve çarpma işlemi
PÇAĞEXER / SAYILAR Ali İhsan TARI İnş. Yük. Müh. F5 tuşu slaytları çalıştırmaktadır.
19 Ekim 2006 GfK TürkiyeCustom ResearchGrowth from Knowledge 1 TUHID - İDA İletişim Hizmetleri Algılama Araştırması Eylül 2006.
1/20 GRAFİKLER Yandaki grafik, hangi çeşit grafiktir? Şekil Sütun Çizgi Daire KIZ ERKEK   Her resim 4 öğrenciyi gösteriyor A B C D.
ONDALIK KESİRLERİN ÖĞRETİMİ
DERS 11 KISITLAMALI MAKSİMUM POBLEMLERİ
4 X x X X X
Mukavemet II Strength of Materials II
SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ.
Yard. Doç. Dr. Mustafa Akkol
İKİNCİ DERECEDEN FONKSİYONLAR ve GRAFİKLER
DEÜ.İİBF-İktisat Bölümü
ANA BABA TUTUMU ENVANTERİ
DP SİMPLEKS ÇÖZÜM.
1 DEĞİŞMEYİN !!!
Test : 2 Konu: Çarpanlar ve Katlar
B. KARLILIK ANALİZİ Yönetim uygulamalarında kar planlaması ve karlılık analizi alanında kullanılan önemli araçlardan biri; literatürde “başabaş analizi,
BASINÇ TEST : 1.
DOĞRUSAL PROGRAMLAMA.
Katsayılar Göstergeler
Çocuklar,sayılar arasındaki İlişkiyi fark ettiniz mi?
SAYILAR NUMBERS. SAYILAR 77 55 66 99 11 33 88.
ÇOK DEĞİŞKENLİ FONKSİYONLARDA
Proje Konuları.
PÇAĞEXER / SAYILAR Ali İhsan TARI İnş. Yük. Müh. F5 tuşu slaytları çalıştırmaktadır.
Diferansiyel Denklemler
DOĞRUSAL EŞİTSİZLİKLER
Lineer Programlama: Model Formulasyonu ve Grafik Çözümü
Doğrusal Programlama Linear Programming
Sunum transkripti:

DOĞRUSAL PROGRAMLAMA

Doğrusal Programlama Two Mines örneği incelenirse, bir matematiksel modelin bir "Doğrusal Program" (DP; linear program - LP) olması için aşağıdaki koşulları sağlaması gerektiği görülür: • Tüm değişkenler süreklidir (continuous) • Tek bir amaç vardır (enbüyükleme (maximize) veya enküçükleme (minimize)) • Amaç ve kısıt fonksiyonları doğrusaldır. Fonksiyondaki her terim ya sabit sayıdır ya da bir sabitle çarpılmış değişkendir DP'ler önemlidir çünkü: • çok sayıda sorun DP olarak formüle edilebilir • "Simpleks algoritması" kullanılarak DP'ler çözülebilir ve en iyi çözüm bulunabilir

Doğrusal Programlama DP'lerin temel uygulama alanlarına aşağıda çeşitli örnekler verilmiştir: • Üretim planlama • Rafineri yönetimi • Karışım • Dağıtım • Finansal ve ekonomik planlama • İşgücü planlaması • Tarımsal planlama • Gıda planlama

Doğrusal Programlama DP'ler için dört temel varsayım söz konusudur: • Oransallık • Toplanabilirlik • Bölünebilirlik • Kesinlik

DP Çözüm çeşitleri DP probleminin çözümü sonunda karşılaşabileceğimiz çözümler aşağıdakilerden biri olabilir. Optimal çözüm, Temel çözüm, Uygun çözüm, Dejenere(bozulan) çözüm.

Uygun Çözüm hali, Elde edilen çözüm DP probleminin tüm kısıtlayıcılarını doyurursa uygun çözüm olur. Optimal çözüm, Problemin çözümü sonunda birkaç uygun çözüm olabilir. Bu uygun çözümler arasından en iyi olanı Optimal Çözümdür. Temel Çözüm, Amaç fonksiyonu ve negatif olmama koşulu dışında, problemin formülasyonunda m sayıda kısıt ve n tane değişken varsa tek bir temel çözüm vardır. Bozulan Çözüm, Temel çözümün bir veya birkaç temel değişkeninin değeri sıfırsa, bozulan çözüm vardır

DP Modellerinin Formülasyonu Formülasyon işleminde 3 adım bulunmaktadır; Karar değişkenlerini belirle ve bunları cebirsel sembollerle belirle. Problemin tanımı içinde yer alan tüm kısıtları veya sınırlamaları belirle ve bu kısıtları karar değişkenlerinin fonksiyonu olarak,Doğrusal Denklemler(eşitlikler) veya Eşitsizlikler şeklinde yaz. Karar Değişkenlerinin doğrusal fonksiyonu olarak Amaç Fonksiyonunu(max veya min) tanımla.

ÖRNEK 1 3.1.1 Giapetto Örneği (Winston 3.1., s. 49) Giapetto tahtadan oyuncak asker ve tren yapmaktadır. Satış fiyatları, bir oyuncak asker için $27, bir oyuncak tren için $21'dır. Bir asker için $10'lık hammadde ve $14'lık işçilik kullanılmaktadır. Bir tren için ise söz konusu rakamlar sırasıyla $9 ve $10'dır. Her bir asker için 2 saat montaj ve 1 saat marangozluk gerekirken, her bir tren için 1 saat montaj ve 1 saat marangozluk gerekmektedir. Eldeki hammadde miktarı sınırsızdır, fakat haftada en çok 100 saat montaj ve 80 saat marangozluk kullanabilen Giapetto'nun haftada en fazla 40 oyuncak asker satabileceğini göz önünde bulundurarak karını enbüyüklemek için hangi oyuncaktan haftada kaç adet üretmesi gerektiğini bulunuz.

ÇÖZÜM 1 x1 = bir haftada üretilen asker sayısı Karar değişkenleri tam olarak verilmesi gereken (bu sorunda Giapetto tarafından) kararları tanımlamalıdır. Giapetto bir haftada kaç oyuncak asker ve tren yapacağına karar vermelidir. Bu karara göre aşağıdaki karar değişkenleri tanımlanabilir: x1 = bir haftada üretilen asker sayısı x2 = bir haftada üretilen tren sayısı Amaç fonksiyonu karar değişkenlerinin bir fonksiyonudur. Gelir veya karını enbüyüklemek ya da maliyetini enküçüklemek isteyen karar vericinin amacını yansıtır. Giapetto haftalık karını (z) enbüyüklemek isteyecektir. Bu sorunda kar (haftalık gelir) – (hammadde satınalma maliyeti) – (diğer değişken maliyetler) olarak formüle edilebilir. Bu durumda Giapetto’nun amaç fonksiyonu: Enbüyükle z = 3x1 + 2x2 Kısıtlar karar değişkenlerinin alabileceği değerler üzerindeki, sınırlamaları gösterir. Herhangi bir sınırlama olmazsa Giapetto çok fazla sayıda oyuncak üreterek çok büyük kar elde edebilir. Fakat gerçek hayatta olduğu gibi burada da kısıtlar vardır; Haftalık kullanılabilen montaj işçiliği zamanı Haftalık kullanılabilen marangozluk zamanı Askerler için haftalık talep İşaret sınırlamaları da eğer karar değişkenleri salt negatif olmayan değerler alıyorsa kullanılmalıdır (Giapetto negatif sayıda asker veya tren üretemez!).

Çözüm 1 Maks z = 3x1 + 2x2 (Amaç fonksiyonu) Yukarıdaki tüm bu özellikler aşağıdaki Doğrusal Programlama (DP; Linear Programming - LP) modelini verir: Maks z = 3x1 + 2x2 (Amaç fonksiyonu) s.t. 2x1 + x2 ≤ 100 (Montaj kısıdı) x1 + x2 ≤ 80 (Marangozluk kısıdı) x1 ≤ 40 (Talep kısıdı) x1, x2 ≥ 0 (İşaret sınırlamaları) Eğer (x1,x2)’nin bir değeri (bir çözüm) tüm bu kısıtları ve işaret sınırlamalarını sağlarsa, söz konusu çözüm olurlu bölgededir (feasible region). Grafik olarak ya da hesaplayarak sorun çözüldüğünde olurlu bölgedeki çözümlerden amaç fonksiyon değeri en yüksek olan çözümün (x1,x2) = (20,60) olduğunu ve z=180 değerini verdiğini buluruz. Bu çözüm en iyi çözümdür (optimal solution).

Çözüm 1 Maks z = 3x1 + 2x2 (Amaç fonksiyonu) Yukarıdaki tüm bu özellikler aşağıdaki Doğrusal Programlama (DP; Linear Programming - LP) modelini verir: Maks z = 3x1 + 2x2 (Amaç fonksiyonu) s.t. 2x1 + x2 ≤ 100 (Montaj kısıdı) x1 + x2 ≤ 80 (Marangozluk kısıdı) x1 ≤ 40 (Talep kısıdı) x1, x2 ≥ 0 (İşaret sınırlamaları) Eğer (x1,x2)’nin bir değeri (bir çözüm) tüm bu kısıtları ve işaret sınırlamalarını sağlarsa, söz konusu çözüm olurlu bölgededir (feasible region). Grafik olarak ya da hesaplayarak sorun çözüldüğünde olurlu bölgedeki çözümlerden amaç fonksiyon değeri en yüksek olan çözümün (x1,x2) = (20,60) olduğunu ve z=180 değerini verdiğini buluruz. Bu çözüm en iyi çözümdür (optimal solution).

Çözüm 1 Rapor Haftada 20 asker ve 60 tren üretilmesi durumunda kar $180 olacaktır. Kar miktarları, eldeki işçilik ve talebe göre elde edilebilecek en büyük kar budur. Daha fazla işçilik bulunursa kar çoğalabilir.

ÖRNEK 2 3.1.2 Reklam Örneği (Winston 3.2, s. 61) Dorian şirketi, yüksek gelirli müşterileri için otomobil ve jeep üretmektedir. Televizyondaki tiyatro oyunlarına ve futbol maçlarına bir dakikalık spot reklamlar vererek satışlarını arttırmayı hedeflemektedir. Tiyatro oyununa verilen reklamın maliyeti $50bin'dir ve hedef kitledeki 7 milyon kadın ve 2 milyon erkek tarafından seyredilebilir. Futbol maçına verilen reklamın maliyeti ise $100bin'dir ve hedef kitledeki 2 milyon kadın ve 12 milyon erkek tarafından seyredilebilir. Dorian yüksek gelirli 28 milyon kadın ve 24 milyon erkeğe en az maliyetle nasıl ulaşır?

ÇÖZÜM 2 Karar değişkenleri aşağıdaki gibi belirlenebilir: x1 = tiyatro oyununa verilen reklam sayısı x2 = futbol maçına verilen reklam sayısı Sorunun modeli: min z = 50x1 + 100x2 öyle ki 7x1 + 2x2 ≥ 28 2x1 + 12x2 ≥ 24 x1, x2≥0 Grafik çözüm yapılırsa (x1,x2) = (3.6,1.4) değerleri için amaç fonksiyonunun en iyi değeri z = 320 olarak bulunur. Grafiğe bakılarak en iyi tamsayılı çözüm (x1,x2) = (4, 2) olarak bulunabilir.

Çözüm 2 Rapor Hedeflenen kitleye ulaşmak için en az maliyetli çözüm 4 adet reklamı tiyatro oyununda ve 2 adet reklamı futbol maçında kullanmak gerekir. Bu durumda Dorian $400bin reklam masrafı yapacaktır

ÖRNEK 3 3.1.3 Beslenme Örneği (Winston 3.4., s. 70) Bayan Fidan dört "temel gıda grubu" ile beslenmektedir: kek, çikolatalı dondurma, kola, ananaslı pasta. Bir adet kek $0.5'a, bir kaşık dondurma $0.2'a, bir şişe kola $0.3'a ve bir dilim pasta $0.8'a satılmaktadır. Her gün en az 500 kalori, 6 oz. çikolata, 10 oz. şeker ve 8 oz. yağ alması gereken Bayan Fidan en az maliyetle bu gereksinimlerini nasıl karşılar? Aşağıdaki tabloyu kullanarak bir DP modeli kurup sorunu çözünüz. Kalori Çikolata Şeker Yağ (ounce) (ounce) (ounce) Kek (1 adet) 400 3 2 2 Çikolatalı dondurma (1 kaşık) 200 2 2 4 Kola (1 şişe) 150 0 4 1 Ananaslı pasta (1 dilim) 500 0 4 5

ÇÖZÜM 3 Karar değişkenleri: x1: günlük yenilecek kek sayısı x2: günlük yenilecek kaşık dondurma sayısı x3: günlük içilecek şişe kola sayısı x4: günlük yenilecek dilim pasta sayısı şeklinde belirlenebilir. Bu durumda amaç fonksiyonu (cent cinsinden toplam günlük maliyet): min w = 50 x1 + 20 x2 + 30 x3 + 80 x4 Kısıtlar: 400 x1 + 200 x2 + 150 x3 + 500 x4 > 500 (günlük kalori) 3 x1 + 2 x2 > 6 (günlük çikolata) 2 x1 + 2 x2 + 4 x3 + 4 x4 > 10 (günlük şeker) 2 x1 + 4 x2 + x3 + 5 x4 > 8 (günlük yağ) xi > 0, i = 1, 2, 3, 4 (işaret sınırlamaları!)

Çözüm 3 Rapor Bayan Fidan günde 3 kaşık dondurma yiyip 1 şişe kola içerek tüm besin gereksinimlerini karşılayabilir ve sadece 90 cent harcar (w=90, x2=3, x3=1).

ÖRNEK 4 3.1.4 Postane Örneği (Winston 3.5., s. 74) Bir postanede haftanın her günü farklı sayıda elemana gereksinim duymaktadır. Sendika kurallarına göre bir eleman 5 gün peş peşe çalışmakta diğer iki gün izin yapmaktadır. Çalıştırılması gereken toplam en az eleman sayısını aşağıdaki iş yüküne göre hesaplayınız. Pzt Sal Çar Per Cum Cmt Paz Gerekli eleman 17 13 15 19 14 16 11

ÇÖZÜM 4 Karar değişkenleri xi (i. gün çalışmaya başlayan eleman sayısı) olsun Matematiksel olarak DP modeli aşağıdaki gibi oluşturulabilir: min z = x1 +x2 +x3 +x4 +x5 +x6 +x7 x1 + x4 +x5 +x6 +x7 ≥ 17 x1 +x2 +x5 +x6 +x7 ≥ 13 x1 +x2 +x3 +x6 +x7 ≥ 15 x1 +x2 +x3 +x4 +x7 ≥ 19 x1 +x2 +x3 +x4 +x5 ≥ 14 +x2 +x3 +x4 +x5 +x6 ≥ 16 +x3 +x4 +x5 +x6 +x7 ≥ 11 xt≥ 0, t

Çözüm 4 Rapor (xt) = (4/3,10/3,2,22/3,0,10/3,5), z = 67/3 şeklindedir. Karar değişkeni değerleri yakın tamsayılara yuvarlanırsa (xt) = (2,4,2,8,0,4,5), z=25 çözümü bulunur (yanlış olabilir!). Elde edilen Tamsayılı Lindo çözümüne göre ise amaç fonksiyonun en iyi değeri z=23'dür ve (xt) = (4,4,2,6,0,4,3) şeklindedir.

ÖRNEK 5 3.1.5 Sailco Örneği (Winston 3.10., s. 99) Sailco şirketi gelecek dört mevsimde kaç adet yelkenli üreteceğine karar verecektir. Talep sırasıyla 40, 60, 75 ve 25 yelkenlidir. Sailco tüm talepleri zamanında karşılamalıdır. Başlangıçta Sailco'nun envanterinde 10 yelkenli vardır. Normal mesai ile bir mevsimde 40 yelkenli üretebilen şirket yelkenli başına $400 işçilik maliyetine maruz kalmaktadır. Fazla mesai ile yapılan her ek yelkenli için ise işçilik maliyeti $450'dır. Herhangi bir mevsimde yapılan yelkenli ya talebi karşılamak için kullanılıp satılır ya da envantere konulur. Bir yelkenlinin bir mevsim envanterde tutulması durumunda ise $20 envanter taşıma maliyeti oluşmaktadır.

ÇÖZÜM 5 t = 1,2,3,4 için karar değişkenleri xt = t. mevsimde normal mesai ile üretilen yelkenli sayısı yt = t. mevsimde fazla mesai ile üretilen yelkenli sayısı Envanter hesaplarının yapılabilmesi için kullanılacak değişkenler: it = t. mevsimin sonunda envanterdeki yelkenli sayısı dt = t. dönem için yelkenli talebi Veri xt ≤ 40, t Mantıksal olarak it = it-1+ xt + yt - dt, t. Talep karşılanmalı it ≥ 0, t (İşaret sınırlamaları xt,yt≥0, t) Bu kısıt kümelerini kullanarak toplam maliyet z’yi enküçüklemeliyiz: z = 400(x1+x2+x3+x4) + 450(y1+y2+y3+y4) + 20(i1+i2+i3+i4)

Çözüm 5 Rapor Lindo en iyi çözümü (x1, x2, x3, x4) = (40, 40, 40, 25), (y1, y2, y3, y4) = (0, 10, 35, 0) ve toplam maliyet = $78450.00 olarak verir. Üretim çizelgesi: M1 M2 M3 M4 Normal mesai (xt) 40 40 40 25 Fazla mesai (yt) 0 10 35 0 Envanter (it) 10 10 0 0 0 Talep (dt) 40 60 75 25

ÖRNEK 6 3.1.6 Müşteri Hizmet Düzeyi Örneği (Winston 3.12, s. 108) Bir bilgisayar şirketinde müşteri hizmetleri için deneyimli uzmana olan talep (adamsaat/ay) aşağıdaki gibidir: t Ocak Şub Mart Nis May dt 6000 7000 8000 9500 11000 Ocak ayı başında şirkette 50 deneyimli uzman vardır. Her uzman ayda 160 saat çalışabilir. Yeni bir uzmanı yetiştirmek için deneyimli uzmanlar 50 saat ayırmaktadır ve söz konusu uzmanın eğitimi bir ayda tamamlanmaktadır. Her deneyimli uzmana ayda $2000, her yeni uzmana ise ayda $1000 ödenmektedir. Her ay deneyimli uzmanların %5'i işten ayrılmaktadır. Şirket hem hizmet talebini karşılamak istemekte hem de maliyetleri enazlamak istemektedir. Sorunu çözmek için DP modeli kurunuz.

ÇÖZÜM 6 Karar değişkenleri: xt = t ayında eğitilecek uzman sayısı İşlem yapabilmek için kullanılan diğer değişkenler ise yt = t. ayın başında şirketteki deneyimli uzman sayısı dt = t. ayın hizmet talebi Bu durumda min z = 2000(y1+...+y5)+1000(x1+...+x5) öyle ki 160yt-50xt ≥ dt , t = 1,...5 y1 = 50 yt = .95yt-1+xt-1 , t = 2,3,4,5 xt,yt≥0

ÖRNEK 7 Ürün Karışım Problemi Beyaz eşya üreten bir firma, mutfakta kullanılan bazı aletleri üretmeyi planlamaktadır.İş gücü ve malzeme- nin kullanıldığı üretim sürecinde 3 farklı ürünün üretilmesi düşünülmek tedir. Bu süreçle ilgili sayısal bilgiler aşağıda verilmektedir.

Ü R Ü N L E R ------------------------------------------- A B C --------------------------------- İşçilik(ürün başı saat) 7 3 6 Malzeme(pound) 4 4 5 Kazanç(ürün başı) 4 2 3 ------------------------------------------- Bu bilgilerin yanında, üretimin günlük en çok 200 poundluk hammadde kısıtı ve toplam çalışma saati olarak ta 150 saatlik bir kapasite vardır. Bu bilgiler ışığı altında kazancı maksimum yapacak üretim kombinasyonunu belirlemek için problemi DP algoritması içinde formüle ediniz.

PROBLEMİN FORMÜLASYONU Karar Değişkenleri XA ….Ürün A nın günlük üretimi, XB ….Ürün B nin günlük üretimi, XC ....Ürün C nin günlük üretimi. Kısıtlar Problemin işgücü ve Hammadde miktarı üzerinde 2 kısıtı vardır.

İş gücü kısıtı 7 XA + 3 XB + 6 XC ≤ 150 saat Hammadde Kısıtı 4 XA + 4 XB + 5 XC ≤ 200 pound Negatif Olmama Kısıtı XA , XB , XC ≥ 0 Amaç Fonksiyonu, Max Z = 4 XA + 2XB + 3XC

Modelin Toplu Görünüşü Max Z = 4 XA + 2XB + 3XC Kısıtlar 7 XA + 3 XB + 6 XC ≤ 150 saat 4 XA + 4 XB + 5 XC ≤ 200 pound XA , XB , XC ≥ 0

Çözüm sonuçları X1(NONBasic)= 0 X2 (Basic ) =50 X3 (NONBasic)= 0 slack 1(NONBasic)= 0 slack 2 (Basic) =-5,10897E-06 Optimal Value (Z)=100,000000638621

ÖRNEK 8 Reklam Aracı Seçme Problemi Bir reklam firması, bir ürün için ,TV,Radyo ve Magazinlerde yapılmak üzere bir reklam kampanyası planlamaktadır. Kampanyanın amacı mümkün olduğunca daha fazla potansiyel müşteriye ulaşmaktır. Bu amaçla yapılan Pazar araştırmasının sonuçları aşağıdaki gibidir, TV Radyo magazin Gün içi P.time ------------------------------------------------------------------ Rekl. Maliyeti($) 40.000 75.000 30.000 15.000 Ulaşılabilen Müşteri sayısı…… 400.000 900.000 500.000 200.000 Ulaşılabilen Kadın Sayısı …………..300.000 400.000 200.000 100.000 ----------------------------------------------------------------------------------------

Reklam firması bu kampanya içinde en çok $800 Reklam firması bu kampanya içinde en çok $800.000 harcama düşünmektedir.Bunun yanında; a)Ulaşabileceği kadın müşteri sayısının ENAZ 2.000.000 kişi olması, b) TV deki reklam harcamalarının ENÇOK $500.000 olması, c) TV gün içi yayınlarda ENAZ 3 Reklamın ve P.Time da da ENAZ 2 Reklamın yapılması, d)Radyo ve magazinlerdeki reklam sayısının 5 ile 10 arasında yapılması düşünülmektedir. Bu bilgiler ışığı altında,ulaşılması düşünülen müşteri sayısını maksimum yapacak modelleme çalışmasını yapınız.

Problemin formülasyonu Karar Değişkenleri X1 : TV gün içi reklam sayısı, X2 : TV P.time reklam sayısı, X3 : Radyo reklam sayısı, X4 : Magazine Reklam sayısı. Kısıtlar Bütçe kısıtı 40.000X1+75000X2+30000X3+15000X4 ≤ 800000 Bayan müşteri kısıtı 300000X1+400000X2+200000X3+100000X4 ≥2000000 TV Reklam harcama kısıtı 40000X1+75000X2 ≤ 500.000

TV Gün içi Reklam Kısıtı X1 ≥ 3 Tv P. Time kısıtı X2 ≥ 2 f) Radyo ve Magazinde Reklam sayısı kısıtı, X3 ≥ 5, X3 ≤ 10, X4 ≥ 5, X4 ≤ 10, Amaç Fonksiyonu ise Max Z :400000X1+900000X2+500000X3+200000X4 Şeklindedir.

Problemin çözümü X1 (Basic)=3 X2 (Basic)=3,066667 X3 (Basic)=10 slack 1(NONBasic)=0 surplus 2(Basic)= 2316667 slack 3(Basic) =150000 surplus 4(NONBasic)=0 surplus 5(Basic)=1,066666 surplus 6(Basic)= 5 slack 7(NONBasic)=0 surplus 8(Basic)= 5 slack 9(NONBasic)=0 Optimal Value (Z) =10959999,8207181

ÖRNEK 8 Kalite Kontrol Denetim Problemi Bir işletmede 2 farklı seviyede denetleme elemanı bulunmaktadır.Bir gün boyunca(8 saat içinde) en az 1800 parçanın denetlenmesi arzu edilmektedir. 1.seviye denetleme elemanı, 25 parçayı %98 güvenle 1 saatte denetlerken, 2.seviye denetleme elamanı ise aynı süre içinde 15 parçayı %95 güvenle kontrol edebilmektedir.

1. denetçinin ücreti $4/ saat iken, 2 1.denetçinin ücreti $4/ saat iken, 2. denetçinin ücreti ise $3/saat tir. Denetçiler tarafından her zaman yapılan hataların her biri,firmaya $2 maliyet getirmektedir. Firma denetleme işi için 1.kalite denetçiden 8 kişi, 2.kalite denetçiden ise 10 kişi bulabilme şansına sahiptir. Bu bilgiler ışığı altında, firma denetleme maliyetlerini minimize etmek amacı ile EN UYGUN SAYIDA denetçi atamayı planlayacak olan modeli DP tekniği ile kurunuz.

Problemin Formülasyonu 1-Karar Değişkenleri X1 …. 1. derece Denetçi Sayısı X2 …. 2.derece Denetçi sayısı 2-Kısıtlar X1 ≤ 8 (1.derece denetçi sayısı kısıtı) X2 ≤ 10 (2.derece denetçi sayısı kısıtı) 8(25) X1 + 8 (15)X2 ≥ 1800 denetlenecek en az parça kısıtı

$4 +2(25)(0.02) = $5 / saat 1.derece denetçiler için Maliyet Bilgileri (Denetleme sırasında,denetçilere ödenen para ve denetleme hatalarının maliyeti) $4 +2(25)(0.02) = $5 / saat 1.derece denetçiler için Ödenmesi gereken miktar. $3+ 2(15)(0.05) = $4.5 /saat 2.derece denetçiler için 1.Denetçinin 1 günlük maliyeti 5*8 = $40 2.Denetçinin 1 günlük maliyeti (4.5)*8=$36 dır. Buradan Amaç Fonksiyonu Min Z = 40 X1 + 36 X2

DS ile Çözüm X1 (Basic)= 8 X2 (Basic)= 1,666667 slack 1 (NONBasic)= 0 slack 2 (Basic)= 8,333333 surplus 3(NONBasic)=0 Optimal Value (Z)= $380

ÖRNEK 9 Diyet Programı Bir diyet programında alınan gıdaların Pasta, Dondurma, Soda, ve Peynirli Sandviç ten sağlandığını varsayalım. Ancak diyet yapıldığı anda satın alınacak 4 gıdanın Browni, Çikulatalı dondurma, Kola, Elmalı Kek olduğu bilinmektedir.

Bu gıdaların maliyeti sırası ile, Browni ……………………………….50 cent Çikulatalı dondurma ………………20 cent, Bir şişe kola…………………………….30 cent, Elmalı kek………………………….......80 cent. Her gün 500 Kalori, 6 Oz çikulata, 10 oz şeker ve 8 Oz yağ harcamak zorunda olduğumuza göre ve gıdaların içerdikleri kaloriler aşağıdaki gibi olduğuna göre, bu karar problemini, günlük kalori ihtiyacını minumum maliyetle karşılayacak şekilde, DP algoritması ile formule ediniz ve DS te çözünüz.

Kalori Tablosu Kalori Çikulata Şeker Yağ *********************************** Browni 400 3 2 2 1 Kaşık Çikulatalı Dondurma 200 2 2 4 1 Şişe kola 150 0 4 1 1 Parça elmalı kek 500 0 4 5 ************************************

Problemin Formülasyonu Karar Değişkenleri X1 :Günlük yenilen Browni sayısı, X2 :Günlük yenilen çikulatalı Dondurma sayısı, X3 :Günlük içilen kola şişe sayısı, X4 :Günlük yenilen elmalı kek parça sayısı. Amaç diyet maliyetini minimize etmektir. Bu diyet programının toplam maliyetini hesaplayabilmek için aşağıdaki bağıntı kullanılabilir.

TC=Browni maliyeti+Dondurma Maliyeti+Kola Maliyeti+Kek maliyeti Örneğin Kola Maliyeti ? TC cola =(1şişe kola fiyatı)*(içilen şişe sayısı)=30X3 Benzer mantık kullanılarak, diğer maliyetlerle birlikte Toplam Maliyet(TC); TC = 50 X1 + 20 X2 +30 X3 +80 X4 Yazılabilir ki, amaç bu fonksiyonu minimize edecek üretim kombinasyonunu belirlemektir.

Kısıtlar K1 -Günlük alınması gereken kalori miktarı ENAZ 500 olduğuna göre, 400X1+200 X2+150 X3+500X4 ≥ 500 kalori K2- Çikulata kısıtı(X3 ve X4 gıdalarında çıkulata olmadığından dikkate alınmamıştır.) 3X1 + 2 X2 ≥6 K3- Şeker Kısıtı 2X1 + 2X2 + 4X3 +4X4 ≥ 10 K4- Yağ Kısıtı 2X1 + 4X2 +X3 + 5X4 ≥ 8

Çözüm X1 (NONBasic)=0 X2 (Basic)=3 X3 (Basic)=1 X4 (NONBasic)=0 surplus 1(Basic)= 250 surplus 2(NONBasic)= 0 surplus 3(NONBasic)= 0 surplus 4(Basic)= 5 Optimal Value (Z)= 90 Cent

Grafik Çözüm Doğrusal programlama problemlerinin formülasyonundan sonra yapılacak iş modeli matematiksel olarak çözmektir. Bu çözümler arasında özellikle 2 değişkenli modeller için kullanılan “grafik çözüm” görsel yorumları da desteklemektedir.

Örnekler 2.

1.Kısıt 2.Kısıt

3.Kısıt 4.Kısıt 5.Kısıt

6.Kısıt

Grafik çözüm 100 400 300 200 500 600 700 800 900

Sonuç

ÖRNEK 2 Örnek Problem : XX şirketi, H1 ve H2 hammaddelerinin karışımından iç ve dış duvar boyası üretmektedir. Aşağıdaki tabloda problemin temel verileri gösterilmektedir. ton başına hammadde günlük maksimum miktarı (ton) kapasite(ton) dış boya iç boya H1 6 4 24 H2 1 2 6 Ton başına kar(1000 5 4 Şirketin yaptığı pazar araştırmasında, günlük iç boya talebinin en fazla 2 ton olduğu görülmüştür. Yine aynı araştırmada, günlük iç boya talebinin günlük dış boya talebinden fazla olduğu ve bu fazlalığın günde en çok 1 ton olduğu anlaşılmıştır. Sirket karını maksimum yapacak şekilde optimum üretim miktarını belirlemek istemektedir.

ÇÖZÜM 2 Modelin karar değişkenleri iç ve dış boya miktarlarıdır. x1 dış boyanın günlük üretim miktarını( ton) x2 iç boyanın günlük üretim miktarını( ton ) göstersin. Şirket için en iyi amaç toplam karı maksimum yapmaktır. Z toplam karı göstermek üzere ; maksimum Z = 5 * x1 + 4 * x2 Şeklinde yazılabilir. Modelin son elemanı hammadde ve taleple ilgili sınırlamalardır. H1 hammaddesinin kullanımı: 6 * x1 + 4 * x2 ton H2 hammaddesinin kullanımı da : 1* x1 + 2 *x2 tondur. Bu hammaddelerin günlük kullanımları sınırlı olduğu için kısıtları şu şekilde yazabiliriz : 6 * x1 + 4 * x2 < = 24 H1 hammaddesi için 1* x1 + 2 *x2 <= 6 H2 hammaddesi için

ÇÖZÜM 2 Ayrıca taleple ilgili sınırlamalar da vardır : İç duvar boyası talebinin günde en çok 2 ton olması ; x2 < = 2 İç boyanın günlük üretiminin dış boyanın üretiminden en çok 1 ton fazla olması ; x2 - x1 < = 1 Modelde yer alan değişkenlerin negatif olmama (pozitiflik koşulu) sınırlamasını da ekleyerek matematik modeli aşağıdaki gibi yazabiliriz : amaç fonksiyonu : maksimum Z = 5 * x1 + 4 * x2 kısıtlar : 6 * x1 + 4 * x2 < = 24 x1 + 2 *x2 <= 6 - x1 + x2 < = 1 x2 < = 2 pozitiflik koşulu : x1 , x2 > = 0 Bu kısıtların tümünü sağlayan herhangi bir çözüm uygun çözüm adını alır.

ÇÖZÜM 2 Grafik çözüm İki değişkenli bir DP modeli grafik olarak çözülebilir. Grafik yöntemin iki önemli adımı vardır : Modelin tüm kısıtlarının sağlandığı uygun çözümleri içeren bir çözüm uzayının belirlenmesi, Çözüm uzayındaki tüm noktalar arasından optimum çözümün bulunması. Yukarıda verilen örneğin grafik çözümünü yapalım. Kısıtları bir koordinat sisteminde göstermenin en kolay yolu, eşitsizlikleri eşitlik şeklinde düşünerek bunlara ait doğruların çizilmesidir. Daha sonra eşitsizliğin işaretine göre doğrunun altında ya da üstünde kalan bölge çözüm bölgesi olarak seçilir. Birinci kısıtı ele alırsak ; 6 * x1 + 4 * x2 < = 24 eşitsizliğini 6 * x1 + 4 * x2 = 24 şeklinde eşitlik olarak yazalım. Bu doğruyu çizebilmek için iki nokta gerekir. x1 = 0 için x2 ‘yi, x2= 0 için de x1 ‘ i hesaplayabiliriz. x1 = 0 için x2= 6 , x2 = 0 için x1 = 4 bulunur. (0,6) ve (4,0) noktalarından geçen doğru aranılan doğrudur. Eşitsizliğin yönü (<= ) şeklinde olduğu için bu doğrunun altında kalan alan bu kısıtı sağlayan alandır. Tüm kısıtlara ait doğrular çizildikten sonra, çözüm uzayı belirlenir. Aslıda uygun çözüm bölgesi sonsuz sayıda uygun nokta içerdiği için , bunların arasından optimum noktayı bulmamız gerekir.

ÇÖZÜM 2 1 3 2 4 X1 X2 A F B E D C

ÇÖZÜM 2 Optimum çözümün belirlenmesi için kar fonksiyonunun artış yönünün bilinmesi gerekir. Bu da Z’e keyfi değerler atayarak yapılabilir. Z’ e önce 10 sonra 15 değerleri verilerek; 5 * x1 + 4 * x2 = 10 ve 5 * x1 + 4 * x2 = 15 doğruları çizilir. Amaç fonksiyonunun daha artırılması durumunda ABCDEF uygun çözüm uzayının dışına çıkılacaktır. Şekilden çözüm uzayının dışına C noktasından çıkıldığı görülmektedir. Dolayısıyla uygun çözümü içeren nokta C noktasıdır. C noktası 1 ve 2 numaralı kısıtların kesişim noktası olduğu için buradan x1 = 3 ve x2= 1.5 bulunur. Günlük üretimde 3 ton dış boya, 1.5 ton iç boya üretildiğinde günlük kar Z= 21000$ olacaktır. Optimum çözümün çözüm uzayının komşu köşe noktalarından birinde bulunması raslantı değildir. Amaç fonksiyonunun eğimi değiştirilse bile, yeni çözüm yine köşe noktalarından birinde olacaktır.

ÇÖZÜM 2 X2 X1 z=21 z’deki artış z=15 z=10 optimum nokta x1 = 3 x2= 1.5

ÖRNEK 3 Örnek problem: Bir çiftlikte günde en az 800 kg özel bir karışımla yapılan yem kullanılmaktadır. Bu karışım, aşağıdaki tabloda verilen maddelerin belirtilen miktarları kullanılarak elde edilmektedir. 1 kg yemde kullanılan miktarlar(kg) Protein Lif Maliyet($/kg) Mısır 0.09 0.02 0.30 Soya unu 0.60 0.06 0.90 Bu ürünün bileşiminde en az %30 protein ve en çok da % 5 lif bulunması zorunludur. Firma minimum maliyetle günlük yem karışımını belirlemek istemektedir. Önce probleme ait matematik modeli kuralım:

ÇÖZÜM 2 Karar değişkenleri: x1 = karışımdaki mısır miktarı (kg) x2 = karışımdaki soya unu miktarı(kg) Amaç fonksiyonu: Minimize Z = 0.3* x1 + 0.9 * x2 Kısıtlar : x1 + x2 > = 800 ( günlük üretim) 0.09* x1 + 0.60* x2 > = 0.3 ( x1 + x2 ) (protein miktarı) 0.02 * x1 + 0.06 * x2 < = 0.05(x1 + x2 ) ( lif miktarı)

ÇÖZÜM 2 Kısıtları ve amaç fonksiyonunu yeniden yazalım: Minimize Z = 0.3* x1 + 0.9 * x2 x1 + x2 > = 800 0.21* x1 - 0.30* x2 < = 0 0.03* x1 - 0.01 * x2 >= 0 x1 , x2 > = 0

ÇÖZÜM 2 optimum noktada değişkenlerin değerleri: x1 = 470.59 kg Çözüm Bölgesi Optimum Nokta optimum noktada değişkenlerin değerleri: x1 = 470.59 kg x2 = 329.42 kg Amaç fonksiyonu : Z = 437.65 $