(Türkçesi: PALME YAYINCILIK AKIŞKANLAR MEKANİĞİ Kaynak Kitap AKIŞKANLAR MEKANİĞİ Y.A. ÇENGEL, JM. CIMBALA (Türkçesi: PALME YAYINCILIK
AKIŞKANLAR MEKANİĞİNİN İLGİ ALANLARI Bir akışkan içerisinde faaliyet gösteren ve içerisinde akışkan faaliyeti olan bütün sistemler akışkanlar mekaniğinin uğraş alanına girer. Uçaklar, hava araçları, jet motorları, pervaneler
AKIŞKANLAR MEKANİĞİNİN UĞRAŞ ALANI Pompalar Deniz araçları Kan dolaşım ve boşaltım sistemleri (BİOAKIŞKANLAR MEKANİĞİ) Türbinler Fanlar Otomobiller
TERMODİNAMİK ÖZELLİKLERİ AKIŞKAN ÖZELLİKLERİ FİZİKSEL ÖZELLİKLER KİNEMATİK ÖZELLİKLER TERMODİNAMİK ÖZELLİKLERİ Kütle Hacim Hız İvme Açısal hız Yer değiştirme vektörü Hacimsel debi Hacimsel büyüme hızı Basınç Yoğunluk Sıcaklık İç enerji Entalpi Entropi Özgül ısılar Dinamik vizkozite Isıl iletkenlik AKIŞ ÖZELLİKLERİ Newton tipi (Doğrusal değişime uyan) Newton tipi olmayan (Doğrusal değişime uymayan )
YÜZEY GERİLME Yüzey gerilimi, Sıvının yüzeyindeki herhangi bir doğrunun birim uzunluğuna, dik doğrultuda etki eden kuvvettir. Böceklerin su yüzeyinde yürümesi İç Çekim: Akışkanını moleküller arasındaki içi çekim kuvveti (KOHEZYON) Dış Çekim: Akışkanla diğr akışkan veya katı cisim arasındaki çekim kuvveti (KOHEZYON)
Hafif metalin su yüzeyinde durması 1/44 Yaprak üzerinde damlalar
Motivasyon Akışkanlar Mekaniği Uygulamalrı; Aerodinamik (Aerodynamics) Biyomühendislik ve biyolojik sistemler(Bioengineering and biological systems) Yanma (Combustion) Enerji üretimi (Energy generation) Geoloji(Geology) Hidrolik ve Hidroloji(Hydraulics and Hydrology) Hidrodinamik(Hydrodynamics) Meteoroloji(Meteorology) Okyanus ve Okyanuz Mühendisliği (Ocean and Coastal Engineering) Su kaynakları(Water Resources) Çok sayıda diğer örnekler (…numerous other examples…) Akışkanlar mekaniği güzeldir (Fluid Mechanics is beautiful)
Aerodynamics 1/44
Bioengineering
Energy generation 1/44
Geology
River Hydraulics 1/44
Hydraulic Structures
Hydrodynamics
Meteorology
Water Resources
Fluid Mechanics is Beautiful
Tsunamis
Tsunamis 1/44
Tsunamis
Methods for Solving Fluid Dynamics Problems Analytical Fluid Dynamics (AFD) Mathematical analysis of governing equations, including exact and approximate solutions. This is the primary focus of ME33 Computational Fluid Dynamics (CFD) Numerical solution of the governing equations Experimental Fluid Dynamics (EFD) Observation and data acquisition.
Analytical Fluid Dynamics How fast do tsunamis travel in the deep ocean? Incompressible Navier-Stokes equations Linearized wave equation for inviscid, irrotational flow Shallow-water approximation, l/h >> 1 For g = 32.2 ft/s2 and h=10000 ft, c=567 ft/s = 387 miles/hr 1/44
Computational Fluid Dynamics In comparison to analytical methods, which are good for providing solutions for simple geometries or behavior for limiting conditions (such as linearized shallow water waves), CFD provides a tool for solving problems with nonlinear physics and complex geometry. Animation by Vasily V. Titov, Tsunami Inundation Mapping Efforts, NOAA/PMEL 1/44
Experimental Fluid Dynamics Oregon State University Wave Research Laboratory Model-scale experimental facilities Tsunami Wave Basin Large Wave Flume Dimensional analysis (Chapter 7 of C&C) is very important in designing a model experiment which represents physics of actual problem 1/44
Experimental Fluid Dynamics Experiments are sometimes conducted in the field or at full scale For tsunamis, data acquisition is used for warning DART: Deep-ocean Assessment and Reporting of Tsunamis Primary sensor: Bourdon tube for measuring hydrostatic pressure 1/44
M1 tank – part load performance Power plant: AGT-1500 Turbine, 1500hp Performance: Maximum speed > 70 km/h 1% efficiency at idle!!!! High power-to-weight ratio Use CODOG for extended range LV100-5 gas turbine engine for the M1A2. The new engine is lighter and smaller with rapid acceleration, quieter running and no visible exhaust. Air conditioning 1/44
Turboprop – the PT6 Pratt & Whitney Canada Free turbine Axial-centrifugal compressor Reverse-flow combustor Started 1956 – remains in production 450-1500 kW Upper right – a Cessna caravan 1/44
Turbofan engine Fan diameter: 2.95 meters Power A380 maiden flight Thrust 338kN (Trent 977) Turbofans have replaced turbojets for passenger aircraft. Better specific fuel consumption. Less noise. A380 is the most advanced, spacious and efficient airliner ever conceived. Launched in December 2000 and now in its detailed definition phase, the A380 will enter airline service in 2006. The world’s only twin-deck, four-aisle airliner with a capacity of 555 passengers. The A380 can be powered by Trent 900 engines from Rolls-Royce or GP7200 engines from The Engine Alliance (a joint venture between General Electric and Pratt & Whitney). The first Airbus A380 superjumbo is scheduled to make its maiden flight in 2004, with first customer delivery in 2006. Eight-stage IP compressor; six-stage HP compressor; single annular tiled combustor with 20 fuel injectors; single-stage HP turbine; single-stage IP turbine; five-stage LP turbine. Civil turbofan (high bpr) 1/44
Turbofan engine RM12 engine powering the Swedish GRIPEN fighter – Military turbofan (low bpr) Total length: 4.04m Weight: 1055Kg Max diameter: 88.4cm (Exhaust nozzle) Inlet diameter: 70.9cm Total compression radio: 27.5:1 Max thrust with afterburner: 80.5kN Max thrust without afterburner: 54.0kN 1/44