Çizge Algoritmaları.

Slides:



Advertisements
Benzer bir sunumlar
8. SINIF 3. ÜNİTE BİLGİ YARIŞMASI
Advertisements

el ma 1Erdoğan ÖZTÜRK ma ma 2 Em re 3 E ren 4.
Yrd. Doç. Dr. Mustafa Akkol
Prof.Dr.Şaban EREN Yasar Üniversitesi Fen-Edebiyat Fakültesi
FONKSİYONLAR Hazırlayan:Ogün İçel.
Simetri ekseni (doğrusu)
NOKTA, DOĞRU, DOĞRU PARÇASI, IŞIN, DÜZLEMDEKİ DOĞRULAR
Saydığımızda 15 tane sayı olduğunu görürüz.
T.C. İNÖNÜ ÜNİVERSİTESİ Arapgir Meslek YÜKSEKOKULU
KÜMELER.
BAĞINTI SAYISI VE ÇEŞİTLERİ Kim korkar matematikten?
MODÜLER ARİTMETİK.
Diferansiyel Denklemler
1/27 GEOMETRİ (Kare) Aşağıdaki şekillerden hangisi karedir? AB C D.
Algoritmalar En kısa yollar I En kısa yolların özellikleri
Algoritmalar DERS 2 Asimptotik Notasyon O-, Ω-, ve Θ-notasyonları
İçerik Ön Tanımlar En Kısa Yol Problemi Yol, Cevrim(çember)
KIR ÇİÇEKLERİM’ E RakamlarImIz Akhisar Koleji 1/A.
FONKSİYONLAR ve GRAFİKLER
RİZE ÜNİVERSİTESİ BAHAR YARI YILI MATERYAL DERSİ
Algoritmalar DERS 3 Böl ve Fethet(Divide and Conquer) İkili arama
Özel Üçgenler Dik Üçgen.
HAZIRLAYAN:SAVAŞ TURAN AKKOYUNLU İLKÖĞRETİM OKULU 2/D SINIFI
1/25 Dört İşlem Problemleri A B C D Sınıfımızda toplam 49 öğrenci okuyor. Erkek öğrencilerin sayısı, kız öğrencilerin sayısından 3 kişi azdır.
ARALARINDA ASAL SAYILAR
Gün Kitabın Adı ve Yazarı Okuduğu sayfa sayısı
KONU KESİRLER BASİT KESİR GJFX BİLEŞİK KESİR.
Problem Çözme Ve Problem Çözme Stratejileri Ödevi Cihan GÖÇ
Matematik 2 Örüntü Alıştırmaları.
MATRİSLER ve DETERMİNANTLAR
Tam sayılarda bölme ve çarpma işlemi
GRAF TEORİSİ Ders 1 TEMEL KAVRAMLAR.
KÜMELER GEZEGENİNE HOŞ GELDİNİZ.
HABTEKUS' HABTEKUS'08 3.
Anadolu Öğretmen Lisesi
DERS 11 KISITLAMALI MAKSİMUM POBLEMLERİ
Mukavemet II Strength of Materials II
Matematik Bütün Konular Slayt.
Yard. Doç. Dr. Mustafa Akkol
MURAT ŞEN AKDENİZ ÜNİVERSİTESİ Üçgenler.
İKİNCİ DERECEDEN FONKSİYONLAR ve GRAFİKLER
Diferansiyel Denklemler
FONKSİYONLAR f : A B.
DOĞAL SAYILAR VE TAM SAYILAR
ÇİZGE KURAMI Yılmaz KILIÇASLAN.
Tuğçe ÖZTOP İlköğretim Matematik Öğretmenliği 2. sınıf
Çocuklar,sayılar arasındaki İlişkiyi fark ettiniz mi?
Toplama Yapalım Hikmet Sırma 1-A sınıfı.
RASYONEL SAYILARLA TOPLAMA ve ÇIKARMA İŞLEMLERİ
ÇOK DEĞİŞKENLİ FONKSİYONLARDA
1.HAFTA 26 Ağustos 2009 ÇARŞAMBA 2.HAFTA 01 EYLÜL 2009 SALI 3.HAFTA 09 EYLÜL 2009 ÇARŞAMBA 4.HAFTA 15 EYLÜL 2009 SALI 5.HAFTA 23 EYLÜL 2009 ÇARŞAMBA 6.HAFTA.
1.HAFTA 26 Ağustos 2009 ÇARŞAMBA 2.HAFTA 01 EYLÜL 2009 SALI 3.HAFTA 09 EYLÜL 2009 ÇARŞAMBA 4.HAFTA 15 EYLÜL 2009 SALI 5.HAFTA 23 EYLÜL 2009 ÇARŞAMBA 6.HAFTA.
Yard. Doç. Dr. Mustafa Akkol
ÖĞR. GRV. Ş.ENGIN ŞAHİN BİLGİ VE İLETİŞİM TEKNOLOJİSİ.
Diferansiyel Denklemler
Çizge Algoritmaları Ders 2.
İleri Algoritmalar 1. ders.
Çizgeler Çizge G=(V,E), ikilisine denir, burada V sonlu bir kümedir, E ise bu kümenin elemanları arasında ikili bir bağıntıdır. V kümesine G çizgesinin.
Algoritmalar II Ders 14 Çizgelerde tüm ikililer arasında en kısa yollar.
İleri Algoritmalar 2. ders.
Çizge Teorisi ve Algoritmaları
Algoritmalar II Ders 11 Çizgeler. Çizgelerin bilgisayarda gösterimi. BFS algoritması.
Çizge Teorisi ve Algoritmalari
Çizge Algoritmalari 4. ders.
İleri Algoritmalar Ders 3.
Çizge Teorisi ve Algoritmalari
Çizge Algoritmaları 3. ders.
Sunum transkripti:

Çizge Algoritmaları

Çizge teorisi 1736, Euler, Königsberg Köprüleri problemini çözdü

Königsberg Köprüleri Problemi A B C D 

Çizge örneği 4 öğrenci: A, B, C, D 4 iş: FF, SC, W, BS Soru:Tüm öğrenciler arzu ettikleri bir işe girebilirler mi? Cevap: Hayır Ch1-4

Çizge tanımı G çizgesi (V,E) ikilisinden oluşmuştur. Burada V(G) boş olmayan sonlu bir kümedir (elemanlarına köşe denir) E(G) ise V(G) kümesinde tanımlı bir bağıntıdır ( elemanlarına eğer varsa kiriş denir). V(G) : G nin köşeler kümesi E(G) : kirişler kümesi Kiriş {u, v} = {v, u} = uv (veya vu) G yönlü ise (digraf denir) Ch1-5

Örnek G=(V,E) olsun V={u, v, w, x, y, z} E={{u,v}, {u,w}, {w,x}, {x,y}, {x,z}} E={uv, uw, wx, xy, xz} G diagram v u w z x y Ch1-6

Komşu ve Bağlı u, v : G nin köşeleri u ve v köşeleri G de komşudur eğer if uv  E(G) ise ( u v ye ve v u ya komşudur) e=uv (e u ve v yi birleştiriyor) (e u ile baülıdır, e v ile bağlıdır) u v e Ch1-7

Çizge çeşitleri Yönsüz çizge: Yönlü çizge: döngü Katlı kiriş, parallel kiriş Yönsüz çizge: (basit) çizge: döngü (), katlı kiriş () Katlı çizge: döngü (), katlı kiriş () Pseudograph: döngü (), katlı kiriş () Yönlü çizge: Yönlü çizge: döngü (), katlı kiriş () Yönlü katlı çizge : döngü (), katlı kiriş () döngü Katlı kiriş değil Katlı kiriş Ch1-8

Mertebe(order) ve boyut(size) G çizgesinin köşe sayısına çizgenin mertebesi denir (|V(G)| ile gösterilir). Kirişlerin sayısına boyut (|E(G)| ile gösterilir ). Önerme 1: Eğer |V(G)| = p ve|E(G)| = q ise Çizgenin mertebesi p ve boyutu q ise (p, q) çizgesi denir Ch1-9

Çizgelerin uygulanması Ali ve Ahmet Ayşe ve Fatma ile tanışıyorlar. Mehmetle Ahmet ve Fatma tanışıyorlar.  Tanışlık çizgesi: Ali Ahmet Ayşe Fatma Mehmet Ch1-10

Köşelerin derecesi Tanım. G çizgesinin v köşesi için N(v) = { u  V(G) | v u  E(G) } kümesine bu köşenin komşuluğu denir. v köşesinin derecesi deg(v) = | N(v) | sayısına denir y u v w x N(u) = {x, w, v}, N(y)={ } deg(u) = 3, deg(y) =0 Ch1-11

Not Eğer |V(G)| = p ise 0  deg(v)  p-1,  v  V(G) dir. deg(v) = 0 ise v köşesine tecrit edilmiş köşe denir. v ye tek köşe denir eğer deg(v) tekse. v ye çift köşe denir eğer deg(v) çiftse. Ch1-12

El sıkışma teoremi Theorem G bir çizge ise, Örnek 2 3 1 u v w x Ch1-13

El sıkışma teoremi Özellik Her çizgenin tek köşelerinin sayısı çift sayıdır. ispat. Eğer tek köşelerin sayısı tek sayıda olsaydı, çizgenin toplam derecesi tek olurdu.  Ch1-14

Düzgün çizge Tanım. G çizgesinin her köşesinin derecesi r ise G çizgesine r-düzgün çizge denir. G çizgesi bir r sayısı için düzgünse bu çizgeye düzgün çizge denir Örnek Not. mertebesi 5 olan 3-düzgün çizge yoktur (Özellik) 2-düzgün Ch1-15

Tümleyen Tanım. G çizgesinin tümleyeni G çizgesidir eğer V(G) = V(G) ve uv E(G) eğer uv  E(G). u v w x G u v w x G Ch1-16

Derece uygulaması Soru: n kişi var (n  2) Bu kişiler arasından hangi iki kişiyi alırsak alalım, bu kişilerin tanıdıkları kişi sayıları bir birinden farklıdır. Bu mümkün mü? ( A B yi tanıyorsa, B de A yı tanıyor) Ch1-17

Örnek 1 Mertebesi n  2 olan çizgenin dereceleri bir birine eşit olan en az 2 köşesinin olduğunu gösteriniz. (ipucu. Önceki sayfadaki problem.) ispat. deg(x) = 0 ve deg(y) = n-1 olacak biçimde x ve y köşeleri olmalıdır bu da olamaz Ch1-18

Bu çizgenin 3 dereceli kaç köşesi vardır? Örnek 2. G çizgesinin mertebesi 14 ve boyutu 25 tir. Köşelerinin derecesi 3 veya 5 tir. Bu çizgenin 3 dereceli kaç köşesi vardır? çözüm. x tane köşenin derecesi 3 olsun, 14-x köşenin derecesi 5 olur. |E(G)| =25  dereceler toplamı=50 3x + 5(14-x) = 50  x = 10 Ch1-19

Örnek 3. G çizgesinin mertebesi 7 ve boyutu 10 dur Örnek 3. G çizgesinin mertebesi 7 ve boyutu 10 dur. 6 köşenin derecesi a ve bir köşenin derecesi b dir. b kaçtır? sol. 6a + b = 20 (a, b) = (0, 20) () (1, 14) () (2, 8) () (3, 2) ()  a=3, b=2. Ch1-20

Isomorf(denk) çizgeler u1 v2 v1 u3 u4 u5 v3 v5 v2 v4 u2 G1 ve G2 aynıdır (köşelerin yerlerini değiştirdikten sonra). Ch1-21

Isomorf (denk çizgeler) Tanım. Eğer V(G1) kümesinden V(G2) kümesine öyle bir 1-1 ve örten  fonksiyonu varsa ve uv  E(G1) ancak ve ancak f (u) f (v)  E(G2) koşulu sağlanıyorsa G1 ve G2 çizgeleri izomorfdur denir(G1  G2 ile gösterilir)  fonksiyonuna izomorfizm denir. Önceki sayfada f (vi) = ui her i için Ch1-22

Tanım. Mertebesi 1 olan çizgeye önemsiz çizge denir Örnek 4 Mertebesi 6 ve boyutu 9 olan ve izomorf olmayan 2 tane 3-düzgün çizge bulunuz . Sol. G1 G2 Üçgen var Üçgen yok Ch1-23

Örnek 5 Aşağıdaki G1 ve G2 çizgelerinin izomorf olup olmadıklarını araştırınız. Üçgensiz Üçgen var Cevap: hayır Ch1-24

1.4 Altçizgeler Tanım. Eğer V(H)  V(G) ve E(H)  E(G) ise H çizgesine G çizgesinin altçizgesi denir ( H  G) Örnek G u v w x y H v w x y v w x y F  G  G Ch1-25

Üretilmiş Altçizge Tanım. S  V(G), S   olsun. G nin köşeleri S olan en büyük alt çizgesine s den üretilmiş alt çizge denir( <S> ile gösterilir) G u v w x y v w x y H H G nin üretilmiş altçizgesi değil H ∪{xw} Ch1-26

Köşelerin silinmesi Tanım.S  V(G) olsun. G-S = <V(G)-S> olarak tanımlanır Eğer S={v} ise G-v yazılır. G u v w x y G-S v w S={x,u} ise  u x y Ch1-27

Kiriş üretilmiş alt çizge Tanım. X  E(G), X   olsun. X den üretilmiş alt çizge, G nin kirişleri X olan en küçük alt çizgesidir ( <X> ile gösterilir) G u v w x y <X> u v w Let X={uv,vw}  Ch1-28

Örnek 6 Eğer H=<E(G)> ise H=<V(G)> olur mu? Tanım. H  G olmak üzere eğer V(H) = V(G) ise H a örten altçizge denir. Tanım. H = G + {uv, uw} ifadesinin anlamı E(H) = E(G) ∪ {uv, uw} , burada uv, uwE(G). Örnek 6 Eğer H=<E(G)> ise H=<V(G)> olur mu? G u v w H v w Hayır  Ch1-29

Örnek G =(p, q) çizge olsun Örnek G =(p, q) çizge olsun. G nin kaç tane farklı kiriş üretilmiş alt çizgesi vardır? Not. Kiriş üretilmiş alt çizge cevap. 2q-1 ( X  E(G) X , 2q-1 X ) Ch1-30

Dereceler dizisi Tanım. G=(V, E), V={v1, v2, …, vp} olsun. s: deg(v1), deg(v2), …, deg(vp) dizisine G nin dereceler dizisi denir (Genelliği bozmadan, s artmayan olsun. Bu durumda s tek olarak belirlenir) G 3 2 1 s: 3, 3, 2, 1, 1, 0 maximum derece : D(G) minimum derece : d(G) Ch1-31

Not Eğer d1, d2, …, dp bir çizgenin dereceler dizisi ise 0  d i  p-1 i. ve çifttir. s: d1, d2, …, dp tam sayılar dizisi ve 0  d i  p-1 i, ve ise s in dereceler dizisi olduğunun kanıtı yoktur. örnek. s: 5, 5, 3, 2, 1, 0 ( p-1 ve 0 aynı zamanda olamazlar) Daha fazlası, d1 p imkansızdır. ) Ch1-32

Olsun. s in grafikseldir ancak be ancak t grafikseldir. Tanım. Negatif olmayan tam sayılar dizisi verilmiş olsun. Eğer dereceleri bu dizinin elemanlarına eşit olan bir çizge varsa bu diziye grafiksel dizi denir Theorem 2 (Havel-Hakimi) s dizisi: d1, d2, …, dp, burada di N, i. olsun. t dizisi : Olsun. s in grafikseldir ancak be ancak t grafikseldir. Ch1-33

(  ) Eğer s1 : grafikselse   G1 de s1 dereceler dizisidir İspat : (  ) Eğer s1 : grafikselse   G1 de s1 dereceler dizisidir G1 … v2 v3 vd1+1 vd1+2 d2-1 d3-1 vp dd1+1-1 dd1+2 dp d1 köşeler  dd1+1 dd1+2 d2 d3 dp G … v2 v3 vd1+1 vd1+2 vp … v1  s : d1, d2, …, dp grafikseldir Ch1-34

iddia: { v1v2, v1v3, …, v1vd1+1}  E(G) İspat devam (  ) Eğer s : d1, d2, …, dp grafikselse   G çizgesi var yani s dereceler dizisidir G ve deg(vi) = di for 1  i  p, ve maximumdur iddia: { v1v2, v1v3, …, v1vd1+1}  E(G) v1 G … v2 v3 vd1+1 vd1+2 d2 d3 vp dd1+1 dd1+2 dp d1 i.e., : : Bu iddia doğru ise, bu durumda G-v1 çizgedir dereceler dizisi s1  s1 grafikseldir Ch1-35

İddia: { v1v2, v1v3, …, v1vd1+1}  E(G) ispat: doğru değilse öyle iki vj ve vk (j < k) köşeleri vardır ki dj > dk yani v1vk  E(G) ama v1vj  E(G). v1 G vj vk vn dj > dk olduğundan  vnV(G) yani vjvn  E(G), vkvn  E(G). G2 = G - {v1vk, vjvn} + {v1vj, vkvn} G2 nin derece dizisi s ama büyük ,  Ch1-36

Algoritma s: d1, d2, …, dp tam sayılar dizisidr s grafiksel midir?: (1) Eğer di=0, i, ise s grafikseldir. Eğer  di<0 bir i için ise s grafikseldir. Aksi durumda, (2). Addıma git (2) s i artmayan şekilde sırala (3) s = s1 olsun(s1 Thm ), (1) e dön Ch1-37

Örnek 1 s: 4, 4, 3, 3, 2, 2 s1’: 3, 2, 2, 1, 2 ( 4 ü sil) s1: 3, 2, 2, 2, 1 (sırala) s2: 1, 1, 1, 1 (3 ü sil) s3’: 0, 1, 1 (ilk biri sil 1) s3: 1, 1, 0 (sırala) s4: 0, 0 (ilk1 i sil)  s grafiksledir Ch1-38

Çizge çizimi s: 4, 4, 3, 3, 2, 2 s1’: 3, 2, 2, 1, 2 s1: 3, 2, 2, 2, 1 s2: 1, 1, 1, 1 s3’: 0, 1, 1 s3: 1, 1, 0 s4: 0, 0  s grafikseldir G 4 2 3 Ch1-39

Örnek 2 s: 5, 4, 3, 2, 1, 1 s1: 3, 2, 1, 0, 0 (5 i sil) s2: 1, 0, -1, 0 (3 ü sil)  s grafiksel değil Ch1-40