3. Hipergeometrik Dağılım

Slides:



Advertisements
Benzer bir sunumlar
Çıkarımsal İstatistik
Advertisements

BENZETİM Prof.Dr.Berna Dengiz 10. Ders.
Kütle varyansı için hipotez testi
GİRİŞ BÖLÜM:1-2 VERİ ANALİZİ YL.
Simülasyon Teknikleri
İSTATİSTİK VE OLASILIK I
YRD.DOÇ.DR.PINAR YILDIRIM OKAN ÜNİVERSİTESİ
İki kütle ortalamasının farkının güven aralığı
Normal dağılan iki kütlenin ortalamalarının farkı için Hipotez testi
İSTATİSTİK VE OLASILIK I
İLİŞKİLERİ İNCELEMEYE YÖNELİK ANALİZ TEKNİKLERİ
BENZETİM Prof.Dr.Berna Dengiz 7. Ders.
Beklenen değer ve Momentler
İstatistik Tahmin ve Güven aralıkları
Farklı örnek büyüklükleri ( n ) ve farklı populasyonlar için ’nın örnekleme dağılışı.
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ
KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI
Rassal Değişken S örnek uzayı içindeki her bir basit olayı yalnız bir gerçel (reel) değere dönüştüren fonksiyona rassal değişken adı verilir. Şu halde.
SİMPLEKS YÖNTEM (Özel Durumlar)
5 Gamma Dağılımı Gamma dağılımının yoğunluk fonksiyonu şöyledir.
Olasılık ve Olay Çeşitleri
Normal Dağılım.
OLASILIK DAĞILIMLARI Bu kısımda teorik olasılık dağılımları incelenecektir. Gerçek hayatta birçok olayın dağılımı bu kısımda inceleyeceğimiz çeşitli olasılık.
Sürekli Olasılık Dağılım (Birikimli-Kümülatif)Fonksiyonu
Sürekli Olasılık Dağılımları
Olasılık Hesapları Rassal herhangi bir olayın, belli bir anda meydana gelip gelmemesi konusunda daima bir belirsizlik vardır. Bu sebeple olasılık hesaplarının.
TAHMİNLEYİCİLERİN ÖZELLİKLERİ ÖRNEKLEME DAĞILIMI
BENZETİM Prof.Dr.Berna Dengiz 9. Ders.
OLASILIK ve OLASILIK DAĞILIMLARI
Örnekleme Dağılımları
Şartlı Olasılık Bir olayın olasılığından söz edebilmek için bir alt kümeyle temsil edilen bu olayın içinde bulunduğu örnek uzayının belirtilmesi şarttır.
Bileşik Olasılık Dağılım Fonksiyonu
ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ
TEORİK DAĞILIMLAR 1- Binomiyal Dağılım 2- Poisson Dağılım
SÜREKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK YOĞUNLUK FONKSİYONLARI
OLASILIK ve KURAMSAL DAĞILIMLAR
BENZETİM Prof.Dr.Berna Dengiz 3. Ders Monte Carlo Benzetimi
Kesikli Şans Değişkenleri İçin;
DAĞILIMLAR VE UYGULAMALAR
KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI
Kİ-KARE DAĞILIMI VE TESTİ
SÜREKLİ ŞANS DEĞİŞKENLERİ
Asimetri ve Basıklık Ölçüleri
İSTATİSTİK UYGULAMALARI
Bilişim Teknolojileri için İşletme İstatistiği
Olasılık dağılımları Normal dağılım
Olasılık Dağılımları ve Kuramsal Dağılışlar
Kesikli ve Sürekli Dağılımlar
OLASILIK DAĞILIMLARI Bu kısımda teorik olasılık dağılımları incelenecektir. Gerçek hayatta birçok olayın dağılımı bu kısımda inceleyeceğimiz çeşitli olasılık.
İSTATİSTİK YGULAMALARI: SINAVA HAZIRLIK
KESİKLİ RASSAL DEĞİŞKENLER
Rassal Değişkenler ve Kesikli Olasılık Dağılımları
İÇİNDEKİLER 2.1 Örneklem Uzayı ve Olaylar Sonucu önceden bilinmeyen bir deney göz önünde bulundurulsun. Deneyin örneklem uzayı olarak bilinen tüm olası.
Kesikli Olasılık Dağılımları
Bilişim Teknolojileri için İşletme İstatistiği Yrd. Doç. Dr. Halil İbrahim CEBECİ B.
İstatistik Tahmin ve Güven aralıkları
Tacettin İnandı Olasılık ve Kuramsal Dağılımlar 1.
Rastgele Değişkenlerin Dağılımları
DERS3 Prof.Dr. Serpil CULA
3. Hipergeometrik Dağılım
İSTATİSTİK II BAĞIMSIZLIK TESTLERİ VE İYİ UYUM TESTLERİ “ c2 Kİ- KARE TESTLERİ “
DERS4 Prof.Dr. Serpil CULA
KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI
1. Bernoulli Dağılımı Bernoulli dağılımı rassal bir deneyin sadece iyi- kötü, olumlu-olumsuz, başarılı-başarısız, kusurlu-kusursuz gibi sadece iki sonucu.
Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları
TEORİK DAĞILIMLAR.
5 Gamma Dağılımı Gamma dağılımının yoğunluk fonksiyonu şöyledir.
1- Değişim Aralığı (Menzil) Bir serideki en büyük değer ile en küçük değer arasındaki fark olarak tanımlanır. R= X max –Xmin 2 – Ortalama Sapma Seriyi.
OLASILIK DAĞILIMLARI Bu kısımda teorik olasılık dağılımları incelenecektir. Gerçek hayatta birçok olayın dağılımı bu kısımda inceleyeceğimiz çeşitli olasılık.
Sunum transkripti:

3. Hipergeometrik Dağılım Binom dağılım ekseriyette yerine koymak suretiyle yapılan örneklemelere tatbik edilmektedir. Örnek, kütleden yerine koymadan çekildiği takdirde artık bağımsız olay söz konusu olmadığından binom dağılım uygulanamaz. Bu gibi durumlarda yani deneylerin bağımsız olmadığı durumlarda Hipergeometrik dağılım uygulanır. a: uygun, b: uygun olmayan a+b eleman içeren bir kütleden iadesiz olarak n elaman seçildiğinde x tanesinin uygun, n-x tanesinin uygun olmayan elemanlardan oluşma olasılığı hipergeometrik olasılık fonksiyonu ile ifade edilebilir. Hipergeometrik olasılık fonksiyonu şöyle yazılır. Dağılımın a, b ve n olmak üzer üç paramet- resi vardır.

Hipergeometrik dağılımın beklenen değeri Hipergeometrik dağılım fonksiyonu Beklenen değer:

3. Hipergeometrik Dağılım Örnek: Bir dernekte 12 si erkek 8 i bayan toplam 20 üye vardır. 5 Kişilik bir komisyon kura ile seçiliyor. Komisyonda 3 erkek bulunma olasılığı nedir? Bu olasılığı binom dağılımı ile bulursak b) Komisyonda en az iki erkek bulunma olasılığı nedir?

4. Poisson Dağılımı Poisson olasılık fonksiyonu şöyle yazılır: olduğu zaman binom dağılımı, Poisson dağılımına yaklaşır. Bir olayın meydana gelme olasılığı (p) sıfıra, dolayısıyla q=1-p ; 1’e yaklaşırsa (terside mümkün ) ve n çok büyük olursa böyle olaylara nadir meydana gelen olaylar denir. Poisson dağılımı nadir meydana gelen olayların dağılımı olarak ta bilinir. Pratik olarak eğer bir olaydaki deney sayısı en az 50 (n≥50) ve np≤5 oluyorsa böyle olaylar nadir olaylar olarak düşünülebilir. Poisson olasılık fonksiyonu şöyle yazılır:

4. Poisson Dağılımı λ=np olup dağılımın ortalamasıdır (beklenen değeri E(X)=λ) ve dağılımın tek parametresidir. Poisson dağılımının varyansı da λ ya eşittir. Var(x)= λ Poisson dağılımı da Binom dağılımı gibi bağımsız olaylarda kullanılır. Ancak kütle sınırsız olduğu zaman olayların bağımsızlığına bakmaksızın bu dağılımı kullanmak mümkündür. Poisson dağılımı mamul muayenesinde, sigortacılıkta, matbaacılıkta,iş kazalarında, telefon santrallerinde, az rastlanır hastalıkların olasılıklarının tahmininde kullanılır.

Poisson dağılımın beklenen değeri Poisson dağılımının beklenen değeri:

Poisson dağılımının varyansı Bunun için önce E(X2) hesaplanır. Varyans

4. Poisson Dağılımı Örnek: Bir fabrikada iş kazalarının dağılımının Poisson’a uygunluğu tespit edilmiştir. Yıllık kişi başına düşen ortalama iş kazası 0,5 alarak bulunmuştur. Tesadüfen seçilen bir kişinin; Hiç Kaza geçirmemesi, Bir kaza geçirmesi, En az bir kaza geçirmesi olasılıklarını bulunuz? Çözüm:

Örnek: Bir fabrikada üretilen malların 0,03’ü kusurludur Örnek: Bir fabrikada üretilen malların 0,03’ü kusurludur.Muayene için 25 birimlik bir örnek çekildiğinde; 4 kusurlu mal çıkması 3 veya daha fazla kusurlu mal çıkması, En fazla 2 kusurlu mal çıkması olasılığı ne olur? Bu örnek için poisson olasılıklarını bulup grafikte gösteriniz. Çözüm:

4. Poisson Dağılımı Kusurlu sayısı Olasılık f(x) 0,4723666 1 0,3542749 0,4723666 1 0,3542749 2 0,1328531 3 0,0332133 4 0,0062275 5 0,0009341 6 0,0001168 7 1,251E-05 8 1,173E-06 9 9,774E-08 10 7,33E-09 11 4,998E-10 12 3,124E-11 13 1,802E-12 14 9,654E-14 15 4,827E-15

1.5- Bir örnek dağılım (Kesikli düzgün dağılım) Eğer x tesadüfi değişkenine ait olan kümedeki her olayın olasılığı eşitse X’in olasılık dağılımı, süreksiz bir örnek (uniform-düzgün) dağılım olarak ifade edilir. X rassal değişkenine ait örnek uzayı ise bir örnek (kesikli düzgün dağılım) dağılım olasılık fonksiyonu şöyle yazılır. Örnek: olarak verildiğine göre; a) Olasılık fonksiyonunu yazarak X’in 8 den büyük olma olasılığını P(X>8); b) 6 dan küçük olma olasılığını bulunuz. Çözüm a) b)

6. Geometrik Dağılım Geometrik dağılımın beklenen değer ve varyansı Binom dağılımının uygulandığı bazı durumlarda, verilen herhangi bir deneyde uygun halin ilk defa meydana gelmesi olasılığı sorulabilir. Eğer uygun hal x inci deneyde ilk defa meydana geliyorsa x-1 sayıdaki deneyde uygun olmayan hal meydana gelmiş demektir. Bunun olasılığı dir. Buna göre X inci deneyde uygun halin ilk defa meydana gelme olasılığı şöyle olur. Buna göre geometrik dağılım fonksiyonu şöyle yazılır. Dağılımın tek parametresi p olup uygun hal olasılığını göstermektedir. Geometrik dağılımın beklenen değer ve varyansı

6. Geometrik Dağılım Örnek: Bir bilardo oyuncusunun sayı yapma olasılığı 0,7 tür. Oyuncunun Tam olarak 5 sayı yapması olasılığı En az 6 sayı yapması olasılığını bulunuz. Oyuncunun sayı yapabilmesi için aralıksız kazanması gerekmektedir. Çözüm: a) b)

7. Negatif Binom Dağılımı x.inci deneyde uygun halin r.inci defa meydana gelme olasılığıenın belirlenmesinde negatif binom dağılımı uygulanmalıdır. Negatif binom olasılık fonksiyonu şöyle yazılır. Özel olarak r=1 olursa geometrik dağılım elde edilir. Bu dağılımda x-1 deney binom dağılımı gösterir. x. Deneyin sonucu da uygun hal (p) olup x-1 deneyin dağılımı ile çarpılmaktadır. Negatif Binom dağılımının beklenen değer ve varyansı

7. Negatif Binom Dağılımı Örnek: Bir avcının hedefi vurma olasılığı %30 dur. a) Avcının yaptığı 5. atışın 3. isabetli atış olma olasılığı ne olur? 10. atışın en fazla 2. isabetli atış olma olasılığı ne olur? Çözüm: a) b)

8. Multinomial Dağılım (Çok terimli dağılım) olaylarının meydana gelme olasılıklarının sırasıyla verilmesi halinde defa meydana gelme olasılığı Multinomial dağılım aracılığıyla bulunur. Burada

8. Multinomial Dağılım (Çok terimli dağılım) Örnek: Bir işletmede çalışan mühendisler arasından 9 kişilik bir proje grubu oluşturulacaktır. İşletmede 10 makine, 6 elektrik, 4 endüstri mühendisi çalışmaktadır. Proje grubunda 4 makine 3 elektrik, 2 endüstri mühendisi bulunma olasılığı ne olur. Çözüm: N=9 x1=4, x2=3, x3=2

Örnek Problemler Bir işletmede 40 işçi çalışmaktadır. İşçilerden 10 tanesi bayandır. a) Bu işçilerden rastgele 8 tanesi seçilerek bir komisyon oluşturulduğunda 2 tanesinin bayan olma olasılığı ne olur? b) Seçilen 8 kişilik komisyonda en az 3 tane bayan eleman bulunma olasılığı ne olur?

Örnek Problemler Bir işletmede bulunan bir makinenin herhangi bir günde arıza yapma olasılığı %3 tür. a) 50 günlük bir üretim süresinde makinenin ortalama arıza sayısı ve varyansı ne olur? b) 50 gün içinde makinenin 3 kere arıza yapma olasılığı ne olur? c) 50 gün içinde makinenin en az 2 kere arıza yapma olasılığı ne olur? d) yukarıdaki şıklardan bağımsız olmak üzere 50 gün içerisinde makinenin en az bir kez arıza yapma olasılığı %70 olduğuna göre makinenin bu süre içinde beklenen arıza sayısı ve herhangi bir günde arızalanma olasılığı ne olur?