Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları ui’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin.

Slides:



Advertisements
Benzer bir sunumlar
el ma 1Erdoğan ÖZTÜRK ma ma 2 Em re 3 E ren 4.
Advertisements

GİRİŞ BÖLÜM:1-2 VERİ ANALİZİ YL.
Yrd. Doç. Dr. Mustafa Akkol
BDP 2014 YEREL SEÇİM PERFORMANSI. GENEL VERİLER - 1 ● TOPLAM KAZANILAN BELEDİYE SAYISI 101 (2009'da 78) ● KAZANILAN İL SAYISI BŞB / 8 İL ● KAZANILAN.
Prof.Dr.Şaban EREN Yasar Üniversitesi Fen-Edebiyat Fakültesi
DOĞAL SAYILAR.
T.C. İNÖNÜ ÜNİVERSİTESİ Arapgir Meslek YÜKSEKOKULU
TİE Platformu Yürütme Kurulu Başkanı
-Demografik- Nüfus Analizi
Atlayarak Sayalım Birer sayalım
ÇÖZÜM SÜRECİNE TOPLUMSAL BAKIŞ
BEIER CÜMLE TAMAMLAMA TESTİ
Diferansiyel Denklemler
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ
Hatalarda Normal Dağılım
H ATALARDA N ORMAL D AĞıLıM EKK tahmincilerinin olasılık dağılımları u i ’nin olasılık dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için.
ÇOKLU DOĞRUSAL BAĞLANTI
5) DOĞRUSAL DENKLEM SİSTEMLERİNİN SAYISAL ÇÖZÜMLERİ
KIR ÇİÇEKLERİM’ E RakamlarImIz Akhisar Koleji 1/A.
HOŞGELDİNİZ 2005 Yılı Gelir Vergisi Vergi Rekortmenleri
HİSTOGRAM OLUŞTURMA VE YORUMLAMA
Soruya geri dön
Prof. Dr. Leyla Küçükahmet
CAN Özel Güvenlik Eğt. Hizmetleri canozelguvenlik.com.tr.
GÖK-AY Özel Güvenlik Eğt. Hizmetleri
“Dünyada ve Türkiye’de Pamuk Piyasaları ile İlgili Gelişmeler”
1/20 PROBLEMLER A B C D Bir fabrikada kadın ve çocuk toplam 122 işçi çalışmaktadır. Bu fabrikada kadın işçilerin sayısı, çocuk işçilerin sayısının 4 katından.
HAZIRLAYAN:SAVAŞ TURAN AKKOYUNLU İLKÖĞRETİM OKULU 2/D SINIFI
1/25 Dört İşlem Problemleri A B C D Sınıfımızda toplam 49 öğrenci okuyor. Erkek öğrencilerin sayısı, kız öğrencilerin sayısından 3 kişi azdır.
ÖRNEKLEM VE ÖRNEKLEME Dr.A.Tevfik SÜNTER.
USLE R FAKTÖRÜ DR. GÜNAY ERPUL.
YASED BAROMETRE 2006 AĞUSTOS.
CBÜ HAFSA SULTAN HASTANESİ ENFEKSİYON KONTROL KOMİTESİ 2011 OCAK-ARALIK 2012 OCAK- MART VERİLERİ.
TÜRKİYE KAMU HASTANELERİ KURUMU
1 YASED BAROMETRE 18 MART 2008 İSTANBUL.
İmalat Yöntemleri Teyfik Demir
Matematik 2 Örüntü Alıştırmaları.
MATRİSLER ve DETERMİNANTLAR
Tam sayılarda bölme ve çarpma işlemi
PÇAĞEXER / SAYILAR Ali İhsan TARI İnş. Yük. Müh. F5 tuşu slaytları çalıştırmaktadır.
Prof. Dr. Hüseyin BAŞLIGİL
EĞİTİMDE ÖLÇME VE DEĞERLENDİRME
4 X x X X X
Mukavemet II Strength of Materials II
ANA BABA TUTUMU ENVANTERİ
1 DEĞİŞMEYİN !!!
Test : 2 Konu: Çarpanlar ve Katlar
Diferansiyel Denklemler
Katsayılar Göstergeler
Çocuklar,sayılar arasındaki İlişkiyi fark ettiniz mi?
ÇOK DEĞİŞKENLİ FONKSİYONLARDA
14.ULUSAL TURİZM KONGRESİ 2013 YILI BİLDİRİLERİ ÜZERİNE BİR DEĞERLENDİRME Prof. Dr. A. Celil ÇAKICI Mersin Üniversitesi Turizm Fakültesi.
Proje Konuları.
PÇAĞEXER / SAYILAR Ali İhsan TARI İnş. Yük. Müh. F5 tuşu slaytları çalıştırmaktadır.
Diferansiyel Denklemler
ÇOKLU REGRESYON MODELİ
Hatalarda Normal Dağılım
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan.
ÇOKLU DOĞRUSAL BAĞLANTI
DOĞRUSAL OLMAYAN REGRESYON MODELLERİ…
ÇOKLU DOĞRUSAL BAĞLANTI
Tüketim Gelir
Normal Dağılım EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan testlerin.
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan.
…ÇOKLU REGRESYON MODELİ…
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1.
Çoklu Doğrusal Bağlantı X3X3 X2X2 r X 2 X 3 = 1 Tam Çoklu Doğrusal Bağlantı.
Hatalarda Normal Dağılım
Hatalarda Normal Dağılım
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları ui’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin.
Sunum transkripti:

Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları ui’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin geçerliliği ui’nin normal dağılmasına bağlıdır. Çünkü ui normal dağılıyorsa, EKK b1 ve b2’nin tahmincileri de normal dağılır. Normal dağılmış değişkenleri olan bir doğrusal fonksiyonun kendisi de NORMAL DAĞILIR.

- + E(ui)=0 ui değerleri

c2 uyum iyiliği testi c2a,sd =? c2hes > c2a,sd 1.Aşama H0: ui’ler normal dağılımlıdır H1ui’ler normal dağılımlı değildir. 2.Aşama c2a,sd =? a = ? sd=? 3.Aşama 4.Aşama c2hes > c2a,sd H0 reddedilebilir

c2 uyum iyiliği testi 0.34 0.34 0.14 0.14 0.02 0.02 E(u)= 0 %68 -s +s %95.5 -2s %99.7 +2s -3s +3s

c2 uyum iyiliği testi s = 12,138 3.4 4 7.0545 4.7091 -3.6364 11.0182 -14.3273 -17.6727 4.9818 -3.3636 -7.7091 18.9455 3.4 3 1.4 0.2 1.4 1 2 0.2 -36.414 -24.276 -12.138 +12.138 +24.276 +36.414

c2 uyum iyiliği testi = 0.9244

Jarque-Bera Normallik Testi 1.Aşama H0: ui’ler normal dağılımlıdır H1: ui’ler normal dağılımlı değildir c2a,sd =? 2.Aşama Sd=? a = ? 3.Aşama JB > c2a,sd 4.Aşama H0 hipotezi reddedilebilir

Jarque-Bera Normallik Testi

Jarque-Bera Normallik Testi 351.07 104.43 -48.09 1337.62 -2940.99 -5519.61 123.64 -38.06 -458.15 6800.15 49.77 22.18 13.22 121.40 205.27 312.32 24.82 11.31 59.43 358.93 2476.65 491.76 174.86 14738.14 42136.40 97546.48 615.95 128.00 3531.95 128832.16 7.0545 4.7091 -3.6364 11.0182 -14.3273 -17.6727 4.9818 -3.3636 -7.7091 18.9455 Se = 0 Se2 = 1178.66 Se3 = -287.99 Se4 = 290672.35

Jarque-Bera Normallik Testi =117.866 = s2 =-28.799 =29067.235 =-0.023 = 2.09

Jarque-Bera Normallik Testi 1.Aşama H0: ui’ler normal dağılımlıdır H1: ui’ler normal dağılımlı değildir 2.Aşama a = 0.05 Sd=2 c2a,sd =5.991 3.Aşama 0.3459 4.Aşama JB < c2a,sd H0 hipotezi reddedilemez.

ÇOKLU DOĞRUSAL BAĞLANTI 12

ÇOKLU DOĞRUSALLIĞIN ANLAMI Çoklu doğrusal bağlantı; Bağımsız değişkenler arasında doğrusal (yada doğrusala yakın) ilişki olmasıdır. 1. parametreler belirlenemez hale gelir. Her bir parametre için ayrı ayrı sayısal değerler bulmak zorlaşır. 2. ise bu değişkenlere ortogonal değişkenler denir ve katsayıların tahmininde çoklu doğrusal bağlantı açısından hiçbir sorun yoktur. 3. ise tam çoklu doğrusal bağlantı yoktur.

Çoklu Doğrusal Bağlantı X3 X2 rX2X3= 1 Tam Çoklu Doğrusal Bağlantı

ÇOKLU DOĞRUSALLIĞIN NEDENLERİ İktisadi değişkenlerin zaman içerisinde birlikte değişme eğiliminde olmaları Bazı açıklayıcı değişkenlerin gecikmeli değerlerinin ilişkide ayrı birer etmen olarak kullanılmasıdır. Genellikle zaman serilerinde görülür.

Çoklu Doğrusal Bağlantının Ortaya Çıkardığı Sonuçlar Regresyon Katsayılarının Değerleri Belirsiz Olur, Regresyon Katsayılarının Varyansları Büyür, t-istatistikleri azalır, Güven Aralıkları Büyür, R2 Olduğundan Büyük Çıkar, Katsayı Tahmincileri ve Standart Hataları Verilerdeki Küçük değişmelerden Önemli Ölçüde Etkilenirler,

ÇOKLU DOĞRUSALLIĞIN DOĞURDUĞU SONUÇLAR a) Katsayıları tahminleri belirlenemez. b)Tahminlerin standart hataları sonsuz büyük olur.

İspat a)

İspat b) X2 yerine kX1 konursa

Çoklu Doğrusal Bağlantı Araba Bakım Masrafları Model Tahminleri Değişkenler Model A Model B Model C Sabit Yas Km s.d. -796.07 (-5.91) 53.45 (18.27) 55 0.856 -151.15 (-7.06) 27.58 (9.58) 7.29 (0.06) 54 0.946 -626.24 (-5.98) 7.35 (22.16) 55 0.897 Düzeltilmiş-R2

Ev Talebi Model Tahminleri Değişkenler Model A Model B Model C s.d. Sabit Faiz Nüfus GSMH Düzeltilmiş-R2 0.375 20 687.90 (1.80) -169.66 (-3.87) 0.91 (3.64) 0.348 19 14.90 (0.41) -184.75 (-3.18) -1315.75 (-0.27) 0.52 (0.54) 20 0.371 -3812.93 (-2.40) -198.40 (-3.87) 33.82 (3.61) r(Nüfus,faiz)= 0.91 r(GSMH,Nüfus)=0.99 r(GSMH,faiz)=0.88

ÇOKLU DOĞRUSAL BAĞLANTININ VARLIĞININ BELİRLENMESİ Varyans Büyütme Modeli Yardımcı Regresyon Modelleri için F testi Klein – Kriteri Şartlı Sayı Kriteri Theil-m Ölçüsü

ÇOKLU DOĞRUSAL BAĞLANTININ BELİRLENMESİ 1.Varyans Büyütme Modeli: Varyans büyütme faktörü; parametre tahminlerinin ve varyanslarının çoklu doğrusal bağlantı nedeni ile gerçek değerlerinden ne derece uzaklaştığını gösterir. VIF kriteri

Çoklu doğrusal bağlantı önemlidir. Çoklu doğrusal bağlantı etkisini araştırabilmek için k tane VIF eğeri 5 Çoklu doğrusal bağlantı önemlidir. .

Çoklu doğrusal bağlantı önemlisizdir. Çoklu doğrusal bağlantı etkisini araştırabilmek için k tane VIF eğeri 5 Çoklu doğrusal bağlantı önemlisizdir. .

ÖRNEK: 1990-2002 dönemi için Türkiye’nin GSMH(milyar TL), Para Arzı(PA, milyar TL), Dış Ticaret Açığı (DT, milyar TL) ve Toptan Eşya Fiyat Endeksi (TEFE,1987=100) değerleri verilmiştir. Yıllar GSMH PA DT TEFE 1990 0.397178 0.072425 -0.0244 425.6 1991 0.634393 0.117118 -0.03118 661.6 1992 1.103605 0.190736 -0.05618 1072.5 1993 1.997323 0.282442 -0.15573 1701.6 1994 3.887903 0.630348 -0.15414 3757.4 1995 7.854887 1.256632 -0.64664 7065.2 1996 14.97807 2.924893 -1.66881 12335.4 1997 29.39326 5.6588 -3.40719 22366.1 1998 53.51833 11.4232 -4.96864 38067.2 1999 78.28297 22.40182 -5.94562 58599.1 2000 125.5961 31.9121 -16.7507 89239.7 2001 179.4801 47.24108 -12.3931 144862.2 2002 265.4756 61.87976 -23.4451 216711.5 Varyans Büyütme Faktörü ile çoklu doğrusal bağlantı sorununu araştırınız.

 5 çoklu doğrusal bağlılık önemlidir Bu verilerden elde edilen model; Bağımsız değişkenleri sırası ile bağımlı değişken yaparak diğer bağımsız değişkenlerle regresyon modeli tahmin edilir.  5 çoklu doğrusal bağlılık önemlidir  5 çoklu doğrusal bağlılık önemlidir  5 çoklu doğrusal bağlılık önemlidir

2.Yardımcı Regresyon Modelleri için F testi Bu yöntemde varyans büyütme faktöründe hesapladığımız belirlilik katsayılarından hesaplama yapılır. Sırası ile incelenen modelde yer alan her bir bağımsız değişken ayrı ayrı bağımlı değişken olmak üzere kalan diğer bağımsız değişkenlerle regresyona tabi tutulur. Oluşturulan söz konusu yeni regresyon modellerine yardımcı regresyon modelleri denir. Oluşturulan yardımcı regresyon modellerinin belirlilik katsayıları hesaplanarak F test istatistiği hesaplanır. Bu yöntem için temel hipotez bağımsız değişkenler arasında ilişki yoktur şeklindedir.

. Test istatistiği yukarıdaki her denklem için hesaplanır. k: incelenen modelin tahmin edilen katsayı sayısı

UYGULAMA: Aynı örnek için yardımcı regresyon modeli ile çoklu doğrusal bağlantı sorununu inceleyiniz. 1.Aşama: H0: Çoklu doğrusal bağlantı yoktur. H1: Çoklu doğrusal bağlantı vardır. 2.Aşama: F0.05,(k-2),(n-k+1) =4.10 3.Aşama: 4.Aşama: Fhes > Ftab H0 reddedilir.

Fhes > Ftab H0 reddedilir.

Klein – Kriteri: Klein, bağımsız değişkenler arasındaki basit korelasyon katsayılarının kareleri modelin genel belirlilik katsayısından büyük olmadığı sürece çoklu doğrusallığın zararlı olmadığını savunmaktadır. Çoklu doğrusal bağlılık zararlıdır. Klein yukarıdaki kriterine göre küçük bir çoklu doğrusal bağlantı bile parametre tahminlerinde anlamsızlığa yol açabilir.

Bu durumda yardımcı regresyon modelleri için F testinde açıklandığı gibi, yardımcı regresyon modelleri tahmin edilir ve bunlardan elde edilecek çoklu belirlilik katsayısı ile karşılaştırılarak karar verilebilir.

UYGULAMA: Aynı örnek için Klein kriteri ile çoklu doğrusal bağlantı sorununu inceleyiniz. Elde edilen yardımcı regresyon modelleri 1. Çoklu doğrusal bağlantı zararlı değildir. 2. Çoklu doğrusal bağlantı zararlı değildir. 3. Çoklu doğrusal bağlantı zararlı değildir.

Şartlı Sayı Kriteri: KARAR: 1. 2. Bu kriterin hesaplanması için bu (X’X) matrisinin birim köklerinden (özdeğerlerinden) yararlanılır. (X’X) matrisinin en büyük birim kökü (1) ve en küçük birim kökü (2) ise şartlı sayı KARAR: 1. Çoklu doğrusal bağlantı orta derecedir. Çoklu doğrusal bağlantı yüksek derecedir. 2.

Örnek: 12 ailenin aylık gelirleri (Y), gıda harcamaları (X2) ve fert sayısı (X3) verileri aşağıdaki gibidir: Aile Y X2 X3 1 2.2 2.8 3 2 3.0 3.5 6 4.1 12.5 4 4.7 6.4 5 4.2 5.9 6.3 8,0 8 7 4.6 9.7 8.8 20.6 9 7.3 15.9 10 4.4 6.7 11 6.9 11.3 12

Ortalamadan farklar ile bağımsız değişkenler katsayı matrisi;

KARAR: Çoklu doğrusal bağlantı düşük derecededir.

Theil-m Ölçüsü Bağımlı değişkenle bağımsız değişkenler arasındaki ilişkiye dayanan bir ölçüdür. Bu ölçü için, modelin genel belirlilik katsayısı ile modelden sırası ile bir tane bağımsız değişkenin çıkarılması ile elde edilecek modellerin çoklu belirlilik katsayıları kullanılır. Modelde yer alan tüm bağımsız değişkenler sırası ile modelden çıkarılarak Regresyon modelleri tahmin edilir ve her model için çoklu belirlilik katsayıları elde edilir.

Theil-m Ölçüsü olarak hesaplanır. Burada bağımsız değişkenlerden biri çıkartıldıktan sonra bağımlı değişken ile diğer bağımsız değişkenlerin regresyonu sonucunda tahmin edilen çoklu belirlilik katsayısını ifade eder. Theil-m ölçüsü çoklu doğrusal bağlılığın önemli olup olmadığı hakkında bilgi vermediğinden, varyans büyütme faktörü ile şartlı sayı daha çok kullanılan ve daha yarar sağlayan kriterlerdir.

bağımsız değişkenler ilişkisizdir Theil-m Ölçüsü “m” ölçüsü her regresyon için ayrı ayrı hesaplanmayan genel bir ölçüdür. m ölçüsü negatif çıkabileceği gibi çok yüksek pozitif değer de olabilmektedir. Hesaplanan m ölçüsü sıfıra eşitse bağımsız değişkenler ilişkisizdir. bağımsız değişkenler ilişkisizdir m = 0

Örnek: Slayt 11 de incelediğimiz model için Theil-m ölçüsünü uygulayalım. Yardımcı regresyon modellerini oluşturalım. m sıfıra yakın bir değer değildir, çoklu doğrusal bağlılık söz konusudur.

Çoklu Doğrusal Bağlantı Problemini Ortadan Kaldırma Yolları 1.Ön Bilgi Yöntemi Y = b1 + b2 X2 + b3 X3 +b4 X4+ u b3 = 0.2b2 Y = b1 + b2 X2 + 0.2b2 X3 +b4 X4+ u Y = b1 + b2 (X2 + 0.2 X3 )+b4 X4+ u Y = b1 + b2 X*+ b4 X4+ u

Çoklu Doğrusal Bağlantı Problemini Ortadan Kaldırma Yolları 2.Kesit ve Zaman Serilerinin Birleştirilmesi lnY = b1 + b2 lnPtA + b3 lnIt +b4 lnPtB+ u lnY - b3 lnIt = b1 + b2 lnPtA +b4 lnPtB+ u lnY* = b1 + b2 lnPtA +b4 lnPtB+ u 3.Bazı Değişkenlerin Modelden Çıkarılması, 4.Değişkenleri Dönüştürme Yöntemi, 5.Ek veya Yeni Örnek Verisi Temin etme, 6.Diğer Yöntemler.

Km = 4.191 + 0.134 Yaş (8.74) (88.11) Bakım = 7.29 + 27.58 Yaş- 151.15 (4.191 + 0.134 Yaş = -626,18 + 7.33Yaş