KÜMELER GEZEGENİNE HOŞ GELDİNİZ.

Slides:



Advertisements
Benzer bir sunumlar
Seramik Dental İmplantlar
Advertisements

BİYOGAZ HAZIRLAYANLAR : HAKAN DEMİRTAŞ
BÖLÜM 5 . KÜTLE BERNOULLI ENERJI DENKLEMİ
HAZIRLAYANLAR AYHAN ÇINLAR YUNUS BAYIR
Yeniliği Benimseyen Kategorilerinin Bütüncül ve Analitik Düşünme Açısından Farklılıkları: Akıllı Telefonlar için Bir İnceleme Prof. Dr. Bahtışen KAVAK,
Doç. Dr. Hatice Bakkaloğlu Ankara Üniversitesi
Newton’un Hareket Yasaları
19. VE 20. YÜZYILDA BİLİM.
Enerji Kaynakları-Bölüm 7
AKIŞKANLAR DİNAMİĞİ BÖLÜM 8 . BORULARDA AKIŞ.
İŞGÜCÜ PİYASASININ ANALİZİ
BRÜLÖR GAZ KONTROL HATTI (GAS TRAİN)
SES DONANIMLARI Ayşegül UFUK Saide TOSYALI
İŞLETİM SİSTEMİ İşletim Sistemi Nedir İşletim Sisteminin Görevleri
Tıbbi ve Aromatik Bitkilerin Hayvansal Üretimde Kullanımı
MUHASEBE YÖNETMELİĞİ KONFERANSI
Bu sitenin konusu kıyamete kadar hiç bitmeyecek
DUYUŞ VE DUYUŞSAL EĞİTİMİN TANIMI
ÇOCUKLARDA BRONŞİOLİT VE PNÖMONİ
Alien hand syndrome following corpus callosum infarction: A case report and review of the literature Department of Neurology and Radiology, Yantai Yuhuangding.
Parallel Dağılmış İşlemci (Parallel Distributed Processing)
TANJANT Q_MATRİS Aleyna ŞEN M. Hamza OYNAK DANIŞMAN : Gökhan KUZUOĞLU.
ADRESLEME YÖNTEMLERİ.
Diksiyon Ödevi Konu:Doğru ve etkili konuşmada
AZE201 ERKEN ÇOCUKLUKTA ÖZEL EĞİTİM (EÇÖE)
ÇUKUROVA ÜNİVERSİTESİ KARATAŞ TURİZM İŞLETMECİLİĞİ VE OTELCİLİK
EĞİTİMDE YENİ YÖNELİMLER
BAĞIMLILIK SÜRECİ Prof Dr Süheyla Ünal.
FACEBOOK KULLANIM DÜZEYİNİN TRAVMA SONRASI STRES BOZUKLUĞU, DEPRESYON VE SOSYODEMOGRAFİK DEĞİŞKENLER İLE İLİŞKİSİ  Psk. Asra Babayiğit.
BİLİŞİM TEKNOLOJİLERİ NEDİR?
PSİKO-SEKSÜEL (RUHSAL) PSİKO-SOSYAL
Sinir Dokusu Biyokimyası
Can, H. (1997). Organizasyon ve Yönetim.
Bölüm 9 OPERASYONEL MÜKEMMELİYETİ VE MÜŞTERİ YAKINLAŞMASINI BAŞARMA: KURUMSAL UYGULAMALAR VIDEO ÖRNEK OLAYLARI Örnek Olay 1: Sinosteel ERP Uygulamalarıyla.
ERGENLİKTE MADDE KULLANIMI
Şeyda GÜL, Fatih YAZICI, Mustafa SÖZBİLİR
MOL HESAPLARINDA KULLANILACAK BAZI KAVRAMLAR:
AKIŞKANLAR MEKANİĞİ 3. BASINÇ VE AKIŞKAN STATİĞİ
GAZLAR Yrd. Doç. Dr. Ahmet Emin ÖZTÜRK. GAZLAR Yrd. Doç. Dr. Ahmet Emin ÖZTÜRK.
Engellerin farkında mıyız?
CEZA MUHAKEMESİ HUKUKU
DİSİPLİN HUKUKU.
İZMİR.
ACİL YARDIM ve AFET YÖNETİMİ ÖĞRENCİLERİNİN KARAR VERME DÜZEYLERİ
Yazar:ZEYNEP CEREN YEŞİLYURT Danışman: YRD. DOÇ. DR
TEMEL MAKROEKONOMİ SORUNLARI VE POLİTİKA ARAÇLARI
IMPLEMENTATION OF SOME STOCK CONTROL METHODS USED IN BUSINESS LOGISTICS ON DISASTER LOGISTICS: T.R. THE PRIME MINISTRY DISASTER AND EMERGENCY MANAGEMENT.
Mikrodalga Sistemleri EEM 448
Örnekler Programlama Dillerine Giriş
Modülasyon Neden Gereklidir?
A416 Astronomide Sayısal Çözümleme - II
İSTATİSTİK II Hipotez Testleri 1.
4.BÖLÜM ÇAĞDAŞ BÜYÜME MODELLERİ
Ayçiçeği Neden Stratejik Ürün Olmalı?
Aydınlanma Işığın doğası ile ilgili bilgilerin tarihsel süreç içindeki değişimini farkeder. a. Dalga ve tanecik teorisinden bahsedilir,
Final Öncesi.
Sayısal Haberleşme.
ULUSLARARASI FİNANS.
Elektrik Enerjisi Üretimi, Dağılımı ve Depolanması
İÇ ORGANLARIN YAPISI VE İŞLEYİŞİ
DENK KUVVET SİSTEMLERİ
Dil Materyalleri ve Çalışmaları Doç. Dr. Müdriye YILDIZ BIÇAKÇI
Sosyal Bilimler Enstitüsü
Anlamsal Web, Anlamsal Web Dilleri ve Araçları
Hazırlayan; Görkem Baygın Yabancı Dil / M Şubesi 21 Maddede İngiliz Dili Edebiyatı Okumak Ne Demektir?
FURKAN EĞİTİM VAKFI TEFSİR USULÜNE GİRİŞ
BİN AYDAN DAHA HAYIRLI GECE KADİR GECESİ
Tarımsal nüfus ve tarımda istihdam
AKIŞKANLAR MEKANİĞİ 3. BASINÇ VE AKIŞKAN STATİĞİ
Emir ÖZTÜRK T.Ü. F.B.E. Bilg. Müh. A.B.D. Y.L. Semineri
Sunum transkripti:

KÜMELER GEZEGENİNE HOŞ GELDİNİZ.

2. Bölüm 3.Bölüm Küme problemleri 1. Bölüm Kümenin tanımı ve gösterimi Boş küme Sonlu ve sonsuz küme Alt küme ve özalt küme Eşit kümeler 2. Bölüm İki kümenin kesişimi ve birleşimi Ayrık kümeler Evrensel küme ve fark kümesi 3.Bölüm Küme problemleri

Küme,birbirinden ayırt edilebilen bir nesneler topluluğudur.

Küme {...} parantezi içinde yazılarak gösterilir. Nesneler aralarına virgül konarak birbirinden ayırt edilir. Örneğin bir A kümesi A={1,2} ile gösterilir

Ör:. Aşağıdaki kümelerin elemanlarını yazınız. 1 Ör: Aşağıdaki kümelerin elemanlarını yazınız. 1. A= ( 8 ile 16 arasındaki çift sayılar) 2. B= ( durmuş ismindeki harfler)

Çözüm: 10, 12, 14 sayılarına “A” kümesinin elemanları denir 2. B= {d,u,r,m,ş} 10, 12, 14 sayılarına “A” kümesinin elemanları denir

Elemanlar {3,5,7} {5,3,7} ,{7,5,3} şeklinde yazılabilir,sıranın önemi yoktur. a,A kümesinin bir elemanı ise bu ifade aA şeklinde, değilse aA ile gösterilir. Elemanların birbirinden ayırt edilebilmesi için aralarına virgül koymak gerekir...

Venn şeması ile Liste yöntemi ile Bir küme üç şekilde gösterilebilir: Ortak özelik metodu ile Liste yöntemi ile

Elemanların kapalı bir bölgede gösterilmesine Venn şeması ile gösterim, Kümenin elemanlarının {…} süslü parantezinin içine iki eleman arasına virgül koyarak yazılmasına liste yöntemi ile gösterim, Elemanların ortak bir özellik ile önerme şeklinde yazılmasına “ortak özellik metodu”ile gösterim denir. Bunları biraz açıklar mısın?

“çiçek” kelimesindeki harfler Kümesini üç yöntemle gösterelim. Venn diyagramı ile.. 1. 2. A A={ç,i,e,k} *ç *i *e *k 3. A={Çiçek kelimesindeki harfler.}

Küme Çeşitleri

3*Evrensel küme 5*Denk küme 4*Eşit küme 1*Boş Küme 2*Sonlu ve Sonsuz Küme , 5*Denk küme 4*Eşit küme

1* Bir kümenin elemanları boş küme denir. yoksa o kümeye boş küme denir. Boş küme d ile gösterilir.

2* Eğer kümenin elemanları sonlu küme sayılamıyorsa sayılabiliyorsa o kümeye sonlu küme sayılamıyorsa sonsuz küme denir.

3* Üzerinde işlem yapılan tüm kümeleri kapsayan kümeye . EVRENSEL KÜME : Üzerinde işlem yapılan tüm kümeleri kapsayan kümeye evrensel küme denir. E harfi ile gösterilir. 1

4* EŞİT KÜMELER: Elemanları aynı olan kümelere eşit kümeler denir.

5* DENK KÜMELER: Eleman sayıları aynı olan kümelere denk kümeler denir

oluyorsa A’ ya B’ nin alt kümesi denir. veya şeklinde yazılabilir. ALT KÜME: A ve B iki küme olmak üzere, A’ nın her elemanı B ‘ nin de elemanı oluyorsa A’ ya B’ nin alt kümesi denir.                 veya                 şeklinde yazılabilir. .

Örnek : Örnek kümeleri denk kümelerdir.Çünkü : , Örnek kümeleri eşit kümelerdir. Çünkü aynı elemanlara sahip.

1.Her küme kendisinin bir alt kümesidir.

2. Her küme evrensel kümenin bir alt kümesidir.

3. Boş küme her kümenin bir alt kümesidir.

4*

5*

6. n elemanlı bir kümenin r elemanlı alt kümelerinin sayısı:

7. Bir kümenin, kendisi dışındaki bütün alt kümelerine, bu kümenin öz alt kümeleri denir Alt kümelerinin sayısı : Öz alt kümelerinin sayısı :

A boş olmayan bir küme olsun. s(A)= n ise, 1.A nın alt küme sayısı 2^n dir. 2. A nın özalt küme sayısı 2^n–1 dir 3. Boş kümenin alt küme sayısı 1 dir.

TÜMLEYEN : Evrensel kümenin elemanlarından A’ nın elemanları çıkarılarak elde edilen kümeye A’ nın tümleyeni denir ve “A’ “ veya “ A  ” ile gösterilir.

Tümleme Özellikleri (A’)’=A E’ =

KUVVET KÜMESİ : Bir kümenin bütün alt kümelerinin oluşturduğu kümeye kuvvet kümesi denir. P(A) ={f ,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} ' dir. kümesinin kuvvet kümesi P(A) olsun.           n elemanlı bir kümenin kuvvet kümesinin eleman sayısı        dir               .

Kümelerde işlemler

NOT : Ortak elemanı olmayan ayrık kümeler denir. KESİŞİM : A ve B kümesinin ortak elemanlarından oluşan kümeye A ile B kesişim kümesi denir “ ile gösterilir. NOT : Ortak elemanı olmayan ayrık kümeler denir.  

BİRLEŞİM : A veya B kümelerinin elemanlarından oluşan kümeye A ile B’ nin birleşim kümesi denir ve “               ” ile gösterilir. Örnek Burada A={1,3,4,5} ve B={1,2,5} olduğundan AÈ B={1,2,3,4,5}  bulunur

Ör: A={-4,-3, -2,-1,0} ve B={x:-2<x<4,xZ} ise A B ve n(A B ) yi bulunuz. Çözüm: B={-1,0,1,2,3,4} dir.A ve B nin ortak elemanları, -1 ve 0. A B ={-4,…4}. n(A)=5 ve n(B)=6, n(A B ) =n(A) + n(B)-n(AB)= 5+6-2=9 olur.

FARK :A ve B herhangi iki küme olmak üzere, A’nın elemanı olup da B’nin elemanı olmayan elemanların kümesine A fark B kümesi denir. Fark kümesi “A – B” veya “A \B” ile gösterilir.

Şekle göre A\B ‘yi bulunuz. ÖRNEK Şekle göre A\B ‘yi bulunuz. Çözüm Burada A={1,3,4,5} ve B={1,2,5} olduğundan A\B={3,4} bulunur. NOT : A \ B ¹ B \ A

SİMETRİK FARK : A ve B herhangi iki küme olarak üzere, A – B ile B –A nın birleşimine A ile B ‘ nin simetrik farkı denir ve “            ” ile gösterilir.

                         EK KUVVET ÖZ . DEĞİŞME ÖZ Dağılma Özelliği Birleşme Özelliği

Fark ve Simetrik farkla ilgili Özellikler : A \ f = A E \ A = A ‘ A \ B =A Ç B ’ = A \ (A Ç B )

Kombinasyonun temel teoremleri :

n(AB)=14 , x+4+x=14 x=5 n(B)=4+x=4+5=9 Ör: A ve B kümeleri için, n(AB)=4, n(A)= n(B) ve n(AB)=14 veriliyor.B nin özalt kümelerini sayısını bulunuz. Çözüm: n(AB)=14 , x+4+x=14 x=5 n(B)=4+x=4+5=9 4 x x B nin alt küme sayısı: 2^n –1=2^9-1=511 dir. n(AB)=4

SAMANYOLU LİSESİ