NİŞANTAŞI ÜNİVERSİTESİ

Slides:



Advertisements
Benzer bir sunumlar
HER GENÇ MATEMATİK ÖĞRENEBİLİR MURAT GÜNER KELKİT
Advertisements

f:(a,b)==>R fonksiyonu i)  x 1,x 2  (a,b) ve x 1  x 2 içi f(x 1 )  f(x 2 ) ise f fonksiyonu (a,b) aralığında artandır. y a x 1 ==>x 2 b.
Temel Matematik 2 Diziler ve Seriler Temel Matematik 2 Diziler ve Seriler Ocak 2016 İ stanbul Üniversitesi Prof. Dr. Ergün Ero ğ lu İ Ü İ şletme Fakültesi.
Temel Matematik 2 9-Seriler Ocak 2016 İstanbul Üniversitesi
MALİYE BİLİMİNİN KONUSU
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
ÖDE5024 DAVRANIŞ BİLİMLERİNDE İSTATİSTİK Yüksek Lisans
NİŞANTAŞI ÜNİVERSİTESİ
ÖDE5024 DAVRANIŞ BİLİMLERİNDE İSTATİSTİK Yüksek Lisans
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
KONU : MAKSİMUM MİNİMUM (EKSTREMUM) NOKTALARI
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
Sunum transkripti:

NİŞANTAŞI ÜNİVERSİTESİ İŞletme matemaTİğİ MAKSIMUM VE MINUMUM PROBLEMLERI NİŞANTAŞI ÜNİVERSİTESİ © İktisadi, İdari ve Sosyal Bilimler Fakültesi iisbf.nisantasi.edu.tr

Maksımum mınımum problemlerı Maksimum ve minimum problemlerinde bir çokluğun alabileceği en büyük ( mutlak maksimum) değer ya da en küçük (mutlak minimum) değer bulunmak istenir. Bu tür problemleri çözmek için; NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ © 1-Problemdeki değişkenler ( x ve y ) arasında bağıntı bulunur. 2-Değişkenler kullanılarak, maksimum ya da minimum yapılması istenen uzunluk, çevre,alan, hacim gibi büyüklükler fonksiyon haline getirilir. ( 2x + 2y, xy, x2y,…gibi) 3-Bu fonksiyon, (1) de bulunan bağıntı kullanılarak tek değişkenli yapılır.( y= f( x ) ) 4-Tek değişkenli fonksiyon türevi sıfıra eşitlenir ve ekstremum değeri bulunur.( f '(x)=0 ) NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ © Ornek NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ © Ornek NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ © Ornek NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ © Ornek NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ © Ornek NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ © Kaynaklar ARİF SABUNCUOĞLU GENEL MATEMATİK VE ÇÖZÜMLÜ ÖRNEKLER NİŞANTAŞI ÜNİVERSİTESİ ©