ART nasıl çalışıyor? Giriş Dikkat Altsistemi Yönlendirme Altsistemi F2

Slides:



Advertisements
Benzer bir sunumlar
Projemizin İçeriği: Anahtarlanmış Doğrusal Sistemler
Advertisements

NOUN CLAUSES (İSİM CÜMLECİKLERİ).
Giriş Dikkat Altsistemi Yönlendirme Altsistemi Kısa Süreli Bellek Uzun Süreli Bellek Kontrol Birimi Kontrol Birimi F1 F2 ART nasıl çalışıyor? Mete Balcı,
21/02/2016 A Place In My Heart Nana Mouskouri « Istanbul « (A Different Adaptation)
Yapay Sinir Ağları (Artificial Neural Networks) Bir Yapay Sinir Ağı Tanımı (Alexander, Morton 1990) Yapay sinir ağı, basit işlemci ünitelerinden oluşmuş,
Geçen hafta anlatılanlar Değişmez küme Değişmez kümelerin kararlılığı Bildiğimiz diğer kararlılık tanımları ve değişmez kümenin kararlılığı ile ilgileri.
Dinamik sistemin kararlılığını incelemenin kolay bir yolu var mı? niye böyle bir soru sorduk? Teorem 1: (ayrık zaman sisteminin sabit noktasının kararlılığı.
Çıkış katmanındaki j. nöron ile gizli katmandaki i. nörona ilişkin ağırlığın güncellenmesi Ağırlığın güncellenmesi Hangi yöntem? “en dik iniş “ (steepest.
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
BİYOMEDİKAL MÜHENDİSLİĞİNDE İLERİ KONULAR Neslihan Serap Şengör Oda no: 1107 Tel:
Devre ve Sistem Analizi
Devre ve Sistem Analizi Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
(Competitive Learning)
A1 sistemi A2 sistemi Hangisi daha hızlı sıfıra yaklaşıyor ? Hatırlatma.
Hatırlatma: Durum Denklemleri
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
Hopfield Ağı Ayrık zamanSürekli zaman Denge noktasının kararlılığı Lyapunov Anlamında kararlılık Lineer olmayan sistemin kararlılığı Tam Kararlılık Dinamik.
Bu durumda lineer sistemin çözümleri neler olabilir? Tüm bu durum portrelerinde ortak bir şey var, ne? S. Haykin, “Neural Networks- A Comprehensive Foundation”2.
(Competitive Learning)
Uyarlanabilir Yankılaşım Teorisi (Adaptive Resonance Theory- Grossberg ) A crucial metatheoretical.
Momentum Terimi Momentum terimi Bu ifade neyi anımsatıyor? Lineer zamanla değişmeyen ayrık zaman sistemi HATIRLATMA.
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
Tanım: (Lyapunov anlamında kararlılık)
1. Mertebeden Lineer Devreler
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Özkan Karabacak oda no:2307 tel.
ISIS IRIR ITIT Z=10e -j45, 3-fazlı ve kaynak 220 V. I R, I S, I T akımları ile her empedansa ilişkin akımları belirleyin.
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Çok Katmanlı Algılayıcı-ÇKA (Multi-Layer Perceptron)
Düğüm-Eyer dallanması için ele alınan ön-örneğe yüksek mertebeden terimler eklense davranışı yapısal olarak değişir mi? Bu soru neden önemli Lemma sistemi.
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Müştak Erhan Yalçın oda no:2304.
2- Jordan Kanonik Yapısı Elemanter işlemler: (1) Satır (Sütun) değiştirme (2) Satır (Sütun)’u bir sabit ile çarpma (3) Satır (Sütun ) toplama Elemanter.
2- Jordan Kanonik Yapısı
F(.) y[n+1] Giriş Vektörü Giriş-Çıkış Eşleme Fonksiyonu Çıkış Mahmut Meral, Lisans Bitirme Ödevi, 2003 Giriş – Çıkış Modeline göre Dinamik Sistem Tanıma.
Ayrık Zaman Hopfield Ağı ile Çağrışımlı Bellek Tasarımı Kullanılan Hücre Modeli: McCulloch-Pitts Eksik birşey var!! Örüntüler: 1. Aşama: Belleğin Oluşturulması.
Doğrusal Olmayan Devreler, Sistemler ve Kaos
İSTANBUL TEKNİK ÜNİVERSİTESİ ♦ ELEKTRONİK & HABERLEŞME MÜHENDİSLİĞİ Öğrenme nasıl gerçekleşiyor? Ağırlıklar hatayı en azlıyacak şekilde güncelleniyor Öğrenme.
Geriye Yayılım Algoritması
Yapay sinir ağı, basit işlemci ünitelerinden oluşmuş, çok
Uyarlanabilir Yankılaşım Teorisi
First Conditional Sentences. LOOK AT THE EXAMPLES If the weather is fine, we’ll play tenis If I have enough money, I’ll buy the car If it rains, we’ll.
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Devre ve Sistem Analizi
Doğrusal Olmayan Devreler, Sistemler ve Kaos
(Self-Organizing Map- Kohonen )
Dinamik Sistem Dinamik sistem: (T, X, φt ) φt : X X a1) φ0=I
Doğrusal Olmayan Devreler, Sistemler ve Kaos
h homeomorfizm h homeomorfizm h 1-e-1 ve üstüne h sürekli h
Poincare Dönüşümü
Özdeğerler, Sıfırlar ve Kutuplar
Dinamik Yapay Sinir Ağı Modelleri
Dinamik Sistem T=R sürekli zaman Dinamik sistem: (T, X, φt ) T zaman
İlk olarak geçen hafta farklı a değerleri için incelediğiniz lineer sisteme bakalım: MATLAB ile elde ettiğiniz sonuçları analitik ifade ile elde edilen.
Geçen hafta ne yapmıştık
Çok Katmanlı Algılayıcı-ÇKA (Multi-Layer Perceptron)
Bazı sorular: Topolojik eşdeğerlilik ne işimize yarayacak, topolojik
Geçen haftaki tanımlar:
Teorem 2: Lineer zamanla değişmeyen sistemi
Sinir Hücresi McCulloch-Pitts x1 w1 x2 w2 v y wm xm wm+1 1 '
Hopfield Ağı Ayrık zaman Sürekli zaman
Banach Sabit Nokta Teoremi (Büzülme Teoremi)
Hatırlatma Yörünge: Or(xo)
Eğiticisiz Öğrenme Amaç: Veri kümesinin belirli özelliklerini, özniteliklerini sadece veri kümesinden yararlanarak belirlemek Vektör Kuantalama Veri Tanımlama.
Would you like a different color?
S. Haykin, “Neural Networks- A Comprehensive Foundation”,
Bazı Doğrusal Olmayan Sistemler
Future: I will/shall & I am going to. Structure: Subject+will/shall+verb(base form)+object.
MAKİNA TEORİSİ II GİRİŞ Prof.Dr. Fatih M. Botsalı.
Imagine that you are a teacher and you are taking your 20 students to England for the summer school.
People with an entrepreneurial mindset are always brave.
Çok Katmanlı Algılayıcı-ÇKA (Multi-Layer Perceptron)
Sunum transkripti:

ART nasıl çalışıyor? Giriş Dikkat Altsistemi Yönlendirme Altsistemi F2 Hatırlatma ART nasıl çalışıyor? Dikkat Altsistemi Yönlendirme Altsistemi F2 Kısa Süreli Bellek Uzun Süreli Bellek Kontrol Birimi Kontrol Birimi F1 Kısa Süreli Bellek Giriş Mete Balcı, 2005-2007 Nevroz Aslan, Bitirme Ödevi, 2003

Tüm bunlar nasıl yapılıyor? Mete Balcı, 2005-2007 Nevroz Aslan, Bitirme Ödevi, 2003 I

ART -1 Amaç: Verilen örüntüleri önceden belirlenmiş benzerlik kıstasına göre öbekleme, gerekirse yeni öbekler oluşturma Verilenler: n boyutlu p tane vektör benzerlik kıstası “uyanıklık” katsayısı Ağ Yapısı: yukarıdan aşağı bağlantılar aşağıdan yukarı bağlantılar ilk ağırlıklar http://en.wikipedia.org/wiki/File:ART.png

F1 katmanındaki gösterim ile veri ‘nin benzerliğinin ölçüsüne Öğrenme Kuralı: için kazananı belirle F1 katmanındaki gösterim ile veri ‘nin benzerliğinin ölçüsüne “uyanıklık” değerine göre karar veriliyor. ise kazanan aşağıdan yukarıya ağırlık güncelleniyor Kazananı belirlemek için hangi ağırlık kullanılıyor? Hangi ağırlık güncelleniyor? Ağırlıkların Güncellenmesi: Kazanan uyanıklık koşulunu sağlamıyorsa ne olacak? F2 katmanına yeni örüntü yerleştirilecek İlgili aşağıdan yukarı ağırlıklar, ilk ağırlık güncellenmesinde gibi belirlenecek, yukarıdan aşağı ağırlıklar yeni örüntünün değerleri olarak alınacak

Adım 1: Birinci örüntü için m=1, n=7 Örnek : Adım 1: Birinci örüntü için m=1, n=7 Başkası olmadığı için kazanan Güncellenmeyi hakediyor mu? Uyanıklık katsayısına bakılınacak

Ağırlıklar güncellenecek

Adım 2: İkinci örüntü için m=1, n=7 Başkası olmadığı için kazanan ancak uyanıklık katsayısına bakmak da gerekiyor Yeni bir nöron oluşturmak gerek

Adım 3: Üçüncü örüntü için m=2, n=7

Ağırlıklar güncellenecek .........

Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yol Geri besleme http://www.willamette.edu/~gorr/classes/cs449/rnn1.html

Dinamik Sistem Önce lineer dinamik sistemler hakkında bildiklerimizi hatırlayalım... durum değişkeni ilk koşul çıkış değişkeni giriş değişkeni Bu değişkenlere ilişkin başka neyi belirtmemiz gerek........ Bu sistemin çözűmű.....

Çözümü bir daha yazarsak özvektörler Bir özel hal: Otonom sistem Çözümü bir daha yazarsak özvektörler özdeğerler Çözüm, özvektörler ve özdeğerler ile nasıl değişir .............................................................................................................

Özvektörleri aynı özdeğerleri farklı iki sistem

Hangisi daha hızlı sıfıra yaklaşıyor ? A1 sistemi A2 sistemi

Özdeğerleri aynı özvektörleri farklı iki sistem

B1 sistemi B2 sistemi

Bu durumda lineer sistemin çözümleri neler olabilir? S. Haykin, “Neural Networks- A Comprehensive Foundation”2nd Edition, Prentice Hall, 1999, New Jersey. Tüm bu durum portrelerinde ortak bir şey var, ne?

Dinamik sistemin özel bir çözümü: Denge noktası Kaç tane denge noktası olabilir? Sistemin davranışını incelemenin bir yolu kararlılığını incelemektir. Tanım: Lyapunov anlamında kararlılık sistemine ilişkin bir denge noktası olsun. Verilen herhangi bir için eşitsizliği eşitsizliğini gerektirecek şekilde bir bulunabiliyorsa denge noktası Lyapunov anlamında kararlıdır. Lineer sistemlerde denge noktasının Lyapunov anlamında kararlılığını incelemek için ne yapılınılıyor? Denge noktasının kararlılığı neye denk, neden?

Lineer sistem modeli neden yetersiz? “Virtually, all physical systems are nonlinear in nature.” M. Vidyasagar sonlu kaçış zamanı çoklu yalıtılmış denge noktası limit çevrim altharmonik, harmonik ve neredeyse periyodik çözümler kaos çoklu davranış Neden hep lineer sistemler ele alınıyor? “. . . not to produce the most comprehensive descriptive model but to produce the simplest possible model that incorporates the major features of the phenomenon of interest.” Howard Emmons

Lyapunov anlamında kararlılığı incelemenin bir yöntemi nedir? (Dolaysız) 1. Yöntem (Dolaylı) Lyapunov’un 2. yöntemi Tanım: Lyapunov Fonksiyonu Lyapunov Fonksiyonudur Teorem: Lyapunov Fonksiyonu olmak üzere, denge noktasının kararlı olması için yeter koşul için olmasıdır. 2. dereceden lineer olmayan bir dinamik sistemin kalıcı hal çözümleri için ne diyebiliriz? Kararlı denge noktaları Poincare- Bendixson Teoremi: Limit çevrim

Lineer olmayan sistemlerde başka nasıl çözümler var? Neden Sonuç Kütle çekim yasası Astronomik olaylar Atmosferin hareketleri Hava durumu tahmini Isaac Newton [1643-1727] G.W.F. Von Leibniz [1646-1716] Determinizm Öngörü S. Haykin, “Neural Networks- A Comprehensive Foundation”, 2nd Edition, Prentice Hall, 1999, New Jersey.

Laplace’s Demon: “If you can imagine a consciousness great enough to know the exact locations and velocities of all the objects in the universe at the present instant, as well as all forces, then there would be no secrets from this consciousness. It could calculate anything about the past or future from the laws of cause and effect.” Werner Heisenberg [1901-1976] Belirsizlik Kuramı (1927): Herhangi bir cismin konumu ve hızı aynı anda tam olarak belirlenemez. “In the strict formulation of the causality law-’When we know the present precisely, we can calculate the future’- It is not the final clause, but rather the premise, that is false. We cannot know the present in all its determining details.” Yaklaşık olarak birbirine benzer nedenler yaklaşık olarak birbirine benzer sonuçlar doğururlar. Ed Lorenz [1917-2008] Kelebek Kanadı Etkisi (1960):

Dinamik Yapay Sinir Ağı Modelleri Nasıl bir sistem? Sonuç Determinizm Öngörü Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) Hopfield Ağı, Elman Ağı

Daha gerçekçi sinir hücresi modeli var mı? Bir sinir hücresi modeli: Hodgkin-Huxley Modeli

Nasıl indirgenecek? y1 y2 ym ym-1 w1 w2 wm-1 wm - xn yn In