KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI

Slides:



Advertisements
Benzer bir sunumlar
İSTATİSTİK VE OLASILIK I
Advertisements

1 OLASILIK • Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı.
YRD.DOÇ.DR.PINAR YILDIRIM OKAN ÜNİVERSİTESİ
BENZETİM Prof.Dr.Berna Dengiz 8. Ders.
BENZETİM Prof.Dr.Berna Dengiz 7. Ders.
Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ
Farklı örnek büyüklükleri ( n ) ve farklı populasyonlar için ’nın örnekleme dağılışı.
1 OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı.
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ
KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI
OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır.
Hazırlayan: Özlem AYDIN
Standart Normal Dağılım
3. Hipergeometrik Dağılım
Rassal Değişken S örnek uzayı içindeki her bir basit olayı yalnız bir gerçel (reel) değere dönüştüren fonksiyona rassal değişken adı verilir. Şu halde.
5 Gamma Dağılımı Gamma dağılımının yoğunluk fonksiyonu şöyledir.
BENZETİM Prof.Dr.Berna Dengiz 6. Ders.
Normal Dağılım.
OLASILIK DAĞILIMLARI Bu kısımda teorik olasılık dağılımları incelenecektir. Gerçek hayatta birçok olayın dağılımı bu kısımda inceleyeceğimiz çeşitli olasılık.
OLASILIK ve OLASILIK DAĞILIMLARI
ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ
TEORİK DAĞILIMLAR 1- Binomiyal Dağılım 2- Poisson Dağılım
SÜREKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK YOĞUNLUK FONKSİYONLARI
OLASILIK ve KURAMSAL DAĞILIMLAR
BENZETİM Prof.Dr.Berna Dengiz 5. Ders.
Kesikli Şans Değişkenleri İçin;
DAĞILIMLAR VE UYGULAMALAR
Merkezi Eğilim (Yer) Ölçüleri
KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI
BENZETİM Prof.Dr.Berna Dengiz 5. Ders.
Kİ-KARE DAĞILIMI VE TESTİ
OLASILIK.
DEĞİŞKENLİK ÖLÇÜLERİ.
SÜREKLİ ŞANS DEĞİŞKENLERİ
Asimetri ve Basıklık Ölçüleri
İSTATİSTİK UYGULAMALARI
Bilişim Teknolojileri için İşletme İstatistiği
Olasılık dağılımları Normal dağılım
Olasılık Dağılımları ve Kuramsal Dağılışlar
Bölüm 07 Sürekli Olasılık Dağılımları
Kesikli ve Sürekli Dağılımlar
OLASILIK DAĞILIMLARI Bu kısımda teorik olasılık dağılımları incelenecektir. Gerçek hayatta birçok olayın dağılımı bu kısımda inceleyeceğimiz çeşitli olasılık.
İSTATİSTİK YGULAMALARI: SINAVA HAZIRLIK
KESİKLİ RASSAL DEĞİŞKENLER
Rassal Değişkenler ve Kesikli Olasılık Dağılımları
Kesikli Olasılık Dağılımları
Bilişim Teknolojileri için İşletme İstatistiği Yrd. Doç. Dr. Halil İbrahim CEBECİ B.
İstatistik Tahmin ve Güven aralıkları
Tacettin İnandı Olasılık ve Kuramsal Dağılımlar 1.
1 İ STATİSTİK II Tahminler ve Güven Aralıkları - 1.
Konum ve Dağılım Ölçüleri BBY252 Araştırma Yöntemleri Güleda Doğan.
Rastgele Değişkenlerin Dağılımları
İSTATİSTİK II Örnekleme Dağılışları & Tahminleyicilerin Özellikleri.
DERS3 Prof.Dr. Serpil CULA
3. Hipergeometrik Dağılım
İSTATİSTİK II BAĞIMSIZLIK TESTLERİ VE İYİ UYUM TESTLERİ “ c2 Kİ- KARE TESTLERİ “
TEMEL BETİMLEYİCİ İSTATİSTİKLER
DERS4 Prof.Dr. Serpil CULA
Kesikli ve Sürekli Şans Değişkenleri İçin;
DEĞİŞKENLİK ÖLÇÜLERİ.
1. Bernoulli Dağılımı Bernoulli dağılımı rassal bir deneyin sadece iyi- kötü, olumlu-olumsuz, başarılı-başarısız, kusurlu-kusursuz gibi sadece iki sonucu.
DEĞİŞKENLİK ÖLÇÜLERİ.
Kesikli Olasılık Dağılımları
Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları
Tıp Fakültesi UYGULAMA 2
TEORİK DAĞILIMLAR.
5 Gamma Dağılımı Gamma dağılımının yoğunluk fonksiyonu şöyledir.
1- Değişim Aralığı (Menzil) Bir serideki en büyük değer ile en küçük değer arasındaki fark olarak tanımlanır. R= X max –Xmin 2 – Ortalama Sapma Seriyi.
OLASILIK DAĞILIMLARI Bu kısımda teorik olasılık dağılımları incelenecektir. Gerçek hayatta birçok olayın dağılımı bu kısımda inceleyeceğimiz çeşitli olasılık.
Sunum transkripti:

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Kesikli Üniform Dağılımı Bernoulli Dağılımı Binom Dağılımı Negatif Binom Dağılımı Geometrik Dağılım Hipergeometrik Dağılım Poisson Dağılımı

Kesikli Üniform Dağılımı Kesikli bir şans değişkeni tanımlı olduğu tüm noktalarda eşit olasılık değerine sahip ise bir başka ifadeyle tanımlı olduğu değerlerin hepsinde olasılık fonksiyonun aldığı değer sabit ise bu kesikli şans değişkeni üniform dağılımına uygundur. Üniform dağılımı gösteren bir şans değişkeni k farklı noktada tanımlı ise olasılık dağılımı; şeklinde ifade edilir.

Kesikli Üniform Dağılımının Beklenen Değer ve Varyansı

Örnek: Hilesiz bir zar atıldığında x şans değişkeni ortaya çıkabilecek farklı durum sayısını ifade ettiğine göre x’in olasılık dağılımını oluşturarak beklenen değerini ve varyansını bulunuz. S = { x / 1,2,3,4,5,6 } Ortaya çıkan olaylar eşit olasılıklı olaylar x şans değişkeninin dağılımı k = 6 olan kesikli üniform dağılımına uygundur.

Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli deneyinin varsayımlarının sağlanması gereklidir. Bernoulli Deneyinin Varsayımları: Deneyler aynı koşullarda tekrarlanabilirlik özelliğine sahip olmalıdır. Deneylerin yalnız iki mümkün sonucu olması gereklidir. Başarı olasılığı (p), deneyden deneye değişmemektedir (Başarısızlık olasılığı q = 1-p ile gösterilir) Denemeler birbirinden bağımsız olmalıdır.

Bernoulli deneyinde ortaya çıkan sonuçlardan bir tanesi başarı durumu, diğeri ise başarısızlık olarak ifade edilir. Bernoulli şans değişkeninin dağılımı ifade edilirken deneyin sadece 1 kez tekrarlanması gereklidir.

Bernoulli Dağılımının Olasılık Fonksiyonu; Bernoulli dağılışında x şans değişkeni başarı durumu için 1, başarısızlık durumu için ise 0 değerini alır. S = { x / 0,1 } Bernoulli Dağılımının Olasılık Fonksiyonu; m = E ( x ) = p s2= Var ( x ) = p (1-p) = pq

Örnekler: Bir fabrikada üretilen bir ürünün hatalı veya sağlam olması, Bir madeni para atıldığında üst yüze yazı veya tura gelmesi, Hilesiz bir zar atıldığında zarın tek veya çift gelmesi,

Örnek: Bir deste iskambilden çekilen bir kağıdın as olup olmaması ile ilgileniyor. As gelmesi başarı olarak ifade edildiği durum için olasılık fonksiyonunu oluşturunuz. x = 0 (as gelmemesi) x = 1 ( as gelmesi) S = { x / 0,1 } P( X = 0 ) = 48 / 52 P( X = 1 ) = 4 / 52

Binom Dağılımı Birbirinden bağımsız n adet bernoulli deneyinin bir araya gelmesi sonucunda binom deneyi gerçekleşir. Binom deneyinin gerçekleşmesi için bernoulli deneyinin bütün varsayımlarının sağlanması gereklidir. Binom şans değişkeni x, n adet denemedeki başarı sayısını ifade etmektedir. n denemede en az 0, en fazla n adet başarı gözlenebileceğinden S = { x / 0,1,2,……,n } olur.

Binom Olasılık Fonksiyonunun Elde Edilmesi Gerçekleştirilen her bir Bernoulli deneyi birbirinden bağımsızdır ve olasılık fonksiyonu olarak ifde edilmiş idi. Bernoulli deneyi n defa tekrarlandığı durumda toplam x adet başarı olmasının olasılığı, x adet başarı olasılığı (p) ile n - x adet başarısızlık olasılığının (q=1-p) çarpımını içermelidir.

Başarı ve başarısızlıkların oluşum sırası yani sıralama önemsiz ise farklı şekilde ortaya çıktığı için ; olarak elde edilir.

Örnekler: Bir fabrikanın deposundan seçilen 10 üründen 2’sinin hatalı olması , Bir madeni para 5 kez atıldığında hiç tura a gelmemesi, üst yüze yazı veya tura gelmesi, Hilesiz bir zar 4 kez atıldığında zarın en çok 1 kez çift gelmesi,

Binom Dağılımının Karakteristikleri Aritmetik Ortalama n = 5 p = 0.1 P(X) .6   E ( X )  np .4 .2 .0 X 1 2 3 4 5 Varyans n = 5 p = 0.5 2  P(X) .6 .4 .2 .0 X 1 2 3 4 5

Örnek: Bir işletmede üretilen ürünlerin % 6’sının hatalı olduğu bilinmektedir. Rasgele ve iadeli olarak seçilen 5 üründen, 1 tanesinin hatalı olmasının olasılığını, En az 4 tanesinin hatalı olmasının olasılığını hesaplayınız. p = 0,06 1- p = 0,94 n = 5 P ( X = 1 ) = ? P ( X ≥ 4 ) = ? P ( X ≥ 4 ) = P ( X = 4) + P ( X = 5 )

Negatif Binom Dağılımı Bernoulli deneyinin tüm varsayımları negatif binom dağılımı içinde geçerlidir. Binom dağılımında n denemede x adet başarı olasılığı ile ilgilenilirken, negatif binom dağılımında ise şans değişkeni (x), k ncı başarıyı elde edinceye kadar yapılan deney sayısına karşılık gelir.

Örnekler: 3 tura gelinceye kadar bir parayı ardışık olarak atalım. X,3 tura elde etmek için gereken atışların sayısı”negatif binom rasgele değişkendir.” Bir,kutuda M beyaz N siyah top vardır. Toplar tekrar yerine konarak çekiliş yapılıyor. X, dört siyah top elde edinceye kadar gereken çekilişlerin sayısı negatif binom rasgele değişkendir.” Bir parayı 5 kez tura gelinceye kadar atalım. X,5 nci turayı elde ettiğimiz deneme sayısı”negatif binom rasgele değişkendir.” Bir basketbolcunun 3 sayılık atışlarda 10 ncu isabeti sağlaması için gerekli olan atış sayısı sayısı”negatif binom rasgele değişkendir.”

x : deney sayısı k : başarı sayısı p : başarı olasılığı S = { x / k, k+1, k+2, k+3… } 1 2 3 ………………. x-1 x 1 2 3 ...……………. k-1 k Binom dağılımını kullanarak x-1 denemede k-1 adet başarı olasılığı hesaplanır ve x nci denemedeki k ncı başarıyı elde etme olasılığı p ile bağımsız olaylar olduğundan çarpılarak aşağıdaki olasılık fonksiyonu elde edilir.

Negatif Binom Dağılımının Beklenen Değer ve Varyansı Yandaki histogram p = 0,5 ve k = 8 parametreli negatif binom dağılım gösteren bir populasyondan alınmış 100 hacimlik bir örnek için oluşturulmuştur.

Zarın kaçıncı kez atılması sonucu 5 nci kez 6 gelmesini beklersiniz? Örnek: Bir kişinin hilesiz bir zarı 10 kez atması sonucunda, 10 ncu atışında 5 nci kez 6 gelmesi olasılığını hesaplayınız. p = 1 / 6 1- p = 5 / 6 x = 10 (deney sayısı) k = 5 (başarı sayısı) Zarın kaçıncı kez atılması sonucu 5 nci kez 6 gelmesini beklersiniz? Not:Binom dağılımını kullanarak x-1 denemede k-1 adet başarı olasılığı hesaplanır ve x nci denemedeki k ncı başarıyı elde etme olasılığı p ile bağımsız olaylar olduğundan çarpılarak aşağıdaki olasılık fonksiyonu elde edilir.

Geometrik Dağılım Negatif Binom dağılımının özel bir durumudur. Bernoulli deneyinin tüm varsayımları geometrik dağılım içinde geçerlidir. Negatif Binom dağılımının özel bir durumudur. k = 1 olduğunda negatif binom dağılımı geometrik dağılım olarak ifade edilir. Geometrik dağılım gösteren şans değişkeni X, ilk başarıyı elde edinceye kadar yapılan deney sayısını ifade eder.

Örnekler: Bir parayı tura gelinceye kadar attığımızda, X ilk turayı bulmak için yapılan atış sayısı geometrik rasgele değişkendir., Bir işletmenin deposundan ilk hatalı ürünü bulana kadar alınan örnek sayısı. Bir zar 6 gelinceye kadar atılıyor. Burada X, ilk altıyı elde etmek için gereken atış sayısı olsun. X geometrik rasgele değişkendir. Bir kutuda 6 kusurlu, 7 kusursuz parça vardır. Parçalar ardışık olarak yerine konup çekiliyor. Burada X, kusurlu parça elde edinceye kadar gereken çekilişlerin sayısı geometrik rasgele değişkendir.

x: deney sayısı p: başarı olasılığı S = { x / 1, 2, 3, 4….. } Negatif Binom dağılımında k = 1 alındığında;

Geometrik Dağılımının Beklenen Değer ve Varyansı Yandaki histogram p = 0,5 parametreli geometrik dağılım gösteren populasyondan alınmış 250 hacimlik bir örnek için oluşturulmuştur.

Örnek: Bir avcı hedefe isabet sağlayana kadar ateş etmektedir Örnek: Bir avcı hedefe isabet sağlayana kadar ateş etmektedir. Avcının hedefi vurma olasılığı 0,75 olduğuna göre avcının hedefi ilk kez 8 nci kez atış yaptığında isabet ettirmesinin olasılığını hesaplayınız. x = 8 P ( X = 8) = ?

Hipergeometrik Dağılım Varsayımları, n deneme benzer koşullarda tekrarlanabilir. Her denemenin 2 mümkün sonucu vardır. Sonlu populasyondan iadesiz örnekleme yapılır. Örnekleme iadesiz olduğundan başarı olasılığı ( p ) deneyden deneye değişir.

Hipergeometrik Dağılımın Olasılık Fonksiyonu n : örnek hacmi N : anakütle eleman sayısı B : populasyondaki başarı sayısı x : örnekteki başarı sayısı S = { x / 0,1, 2, 3, …..,n }

Hipergeometrik Dağılımın Karakteristikleri p = B/N için Yandaki histogram N = 10000 ve B = 2000 parametreli hipergeometrik dağılım gösteren populasyondan alınmış 250 hacimlik bir örnek için oluşturulmuştur.

Örnek: Yeni açılan bir bankanın ilk 100 müşterisi içinde 60 tanesi mevduat hesabına sahiptir. İadesiz olarak rasgele seçilen 8 müşteriden 5 tanesinin mevduat hesabına sahip olmasının olasılığı nedir? n : örnek hacmi n=8 N : anakütle eleman sayısı N=100 B : populasyondaki başarı sayısı B=60 x : örnekteki başarı sayısı x= 6

N= 100 B = 60 n = 8 x = 5

Poisson Dağılımı Kesikli Şans değişkenlerinin olasılık dağılımlarından en önemlilerinden biri Poisson Dağılımıdır. Günlük hayatta ve uygulamada çok sayıda kullanım alanı bulunmaktadır. Ünlü Fransız matematikçisi Poisson tarafından bulunmuştur. Belirli bir alan içerisinde rasgele dağılan veya zaman içerisinde rasgele gözlenen olayların olasılıklarının hesaplanabilmesi için çok kullanışlı bir modeldir.

Poisson Sürecinin Varsayımları Belirlenen periyotta meydana gelen ortalama olay sayısı sabittir. Herhangi bir zaman diliminde bir olayın meydana gelmesi bir önceki zaman diliminde meydana gelen olay sayısından bağımsızdır.(periyotların kesişimi olmadığı varsayımı ile) Mümkün olabilecek en küçük zaman aralığında en fazla bir olay gerçekleşebilir. Ortaya çıkan olay sayısı ile periyodun uzunluğu doğru orantılıdır.

Örnekler Bir şehirde bir aylık süre içerisinde meydana gelen hırsızlık olayların sayısı, Bir telefon santraline 1 dk. içerisinde gelen telefon çağrılarının sayısı, Bir kitap içindeki baskı hatalarının sayısı, İstanbul’da 100 m2’ye düşen kişi sayısı, Ege Bölgesinde 3 aylık sürede 4,0 şiddetinden büyük olarak gerçekleşen deprem sayısı.

Poisson Dağılımının Olasılık Fonksiyonu l : belirlenen periyotta ortaya çıkan olay sayısı x : ortaya çıkma olasılığı araştırılan olay sayısı S = { x / 0,1, 2, 3, ….., }

Poisson Dağılımının Beklenen Değer ve Varyansı Beklenen değeri ve varyansı birbirine eşit olan tek dağılıştır.

5 dakika içinde 1 müşteri gelmesi olasılığını, Örnek: Bir mağazaya Cumartesi günleri 5 dakikada ortalama olarak 4 müşteri gelmektedir. Bir Cumartesi günü bu mağazaya, 5 dakika içinde 1 müşteri gelmesi olasılığını, Yarım saate 2’den fazla müşteri gelmesi olasılığını, a) l = 4 P ( x = 1 ) = ? 5 dk’da 4 müşteri gelirse, 30 dk’da 24 müşteri gelir. l = 24 P ( x > 2 ) = ? P( x > 2 ) = 1 – [P(x=0)+P(x=1)+P(x=2)] ÖDEV: 1 saatte en çok 1 müşteri gelmesinin olasılığını hesaplayınız.

Sürekli Şans Değişkenlerinin Olasılık Fonksiyonları Sürekli değişkenlerdeki olasılık fonksiyonuna sürekli olasılık fonksiyonu, olasılık yoğunluk fonksiyonu, veya sadece yoğunluk fonksiyonu denir. Sürekli bir şans değişkenin olasılık yoğunluk fonksiyonu f(x) ile gösterilir. Herhangi bir fonksiyonun olasılık yoğunluk fonksiyonu olabilmesi için; X’in tanım aralığı için f(xi) ≥ 0 , şartlarını sağlaması gereklidir. 38

Sürekli Şans Değişkenleri İçin Olasılık Sürekli bir değişkenin tanımlı olduğu aralıkta sonsuz sayıda değer vardır. Değişkenin bunlar içinden belirli bir değeri alma olasılığı olur. Bu sebepten sürekli değişkenlere ait olasılık fonksiyonları, kesikli değişkenlerin aksine bu değişkenin belirli bir değeri alma olasılıklarının hesaplanmasına imkan vermez. 39

Sürekli bir x şans değişkenin a ile b arasında olma olasılığı; Bu fonksiyonlarda değişkenin belirli bir değer yerine belirli bir aralıkta değer alma olasılığının hesaplanması yoluna gidilir. Sürekli bir x şans değişkenin a ile b arasında olma olasılığı; şeklinde hesaplanır. 40

olduğundan f(x) olasılık yoğunluk fonksiyonudur. Örnek: f(x) fonksiyonu aşağıdaki gibi tanımlanıyor olsun a) f(x) olasılık yoğunluk fonksiyonu mudur? ise f(x) olasılık yoğunluk fonksiyonudur. olduğundan f(x) olasılık yoğunluk fonksiyonudur. b) P ( 1,5 < x < 1,8 ) = ? 41

Sürekli Şans Değişkenleri İçin Beklenen Değer ve Varyans 42

Sürekli Şans Değişkenleri İçin Beklenen Değer ve Varyans Örnek: f(x) fonksiyonu aşağıdaki gibi tanımlanıyor olsun a) X rassal değişkeninin beklenen değerini bulunuz. 43

b) X rassal değişkeninin varyans değerini bulunuz 44

Ağaç Diyagramı Her birinin sonucunun sonlu sayıda olduğu birden fazla deneyin tüm mümkün sonuçlarını görsel bir şekilde ortaya koymak için kullanılır. 45

Örnek: Ali ile Can masa tenisi oynamaktadırlar Örnek: Ali ile Can masa tenisi oynamaktadırlar. 3 set kazananın galip geleceği maçın ortaya çıkabilecek tüm mümkün sonuçlarını gösteren ağaç diyagramını oluşturunuz. Olası Durumlar; AAA,CCC AACA,CCAC ACAA,CACC ACCC,CAAA ACACA,CACAC AACCA,CCAAC AACCC,CCAAA ACACC,CACAA ACCAA,CAACC ACCAC,CAACA 20 ADET 46

SÜREKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK YOĞUNLUK FONKSİYONLARI Üstel Dağılım Sürekli Üniform Dağılım Normal Dağılım

Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin dağılışıdır.Bekleme kuyruğu sorunlarını çözmede kullanılır. Örnek: Bir bankada veznede yapılan işlemler arasındaki geçen süre, Bir taksi durağına gelen bekleyen müşteriler arasındaki süre, Bir hastanenin acil servisine gelen hastaların arasındaki geçen süre, Bir kumaşta iki adet dokuma hatası arasındaki uzunluk (metre). 48

Belirli bir zaman aralığında mağazaya gelen müşteri sayılarının dağılışı Poisson Dağılımına uygundur. Bu müşterilerin mağazaya varış zamanları arasındaki geçen sürenin dağılımı da Üstel Dağılıma uyacaktır. Üstel Dağılımın parametresi a olmak üzere Üstel ve Poisson Dağılımlarının parametreleri arasında şu şekilde bir ilişki vardır. 49

Üstel Dağılımın Olasılık Yoğunluk Fonksiyonu m:iki durumun gözlenmesi için gereken ortalama süre x : iki durum arasında veya ilk durumun ortaya çıkması gereken süre ya da uzaklık. f(x)’e, üstel dağılım; x’e üstel dağılan değişken denir.Üstel dağılımın parametresi a dır. 50

Üstel Dağılımının Beklenen Değer ve Varyansı Ortalama Varyans b = 10 parametreli bir populasyondan alınan n = 1000 hacimlik bir örnek için oluşturulan histogram. 51

Örnek: Bir kitaplığın danışma masasında kullanıcılara hizmeti 5dk. ortalama süre ile üstel dağılmaktadır. Bir kullanıcıya verilen hizmetin 10dk. dan uzun sürme olasılığı nedir? P(X>10)=?

Örnek: Bir servis istasyonuna her 20dk. da ortalama 4 araç gelmektedir. Servise arka arkaya gelen iki araç arasındaki zaman aralığının en çok 4 dk.olma olasılığı nedir? 20dk. da ort. 4 araç 1dk. da x

Örnek: Bir taksi durağına bir saatlik zaman dilimi içerisinde gelen taksilerin geliş sayısı Poisson Dağılışına uygun bir şekilde gerçekleşmektedir. Durağa saatte ortalama 24 adet taksinin geldiği bilindiğine göre durağa gelen bir yolcunun en çok 5 dakika beklemesi olasılığı nedir? Saatte (60dakikada) 24 adet taksi geliyorsa, 1 dakikada 24/60 adet taksi gelir. 1 adet taksi gelmesi için gereken süre a = 1/2,5 dk olur. P ( x ≤ 5 ) = ? HESAPLAMA KOLAYLIĞI!!

Sürekli Üniform Dağılımı a ve b gibi iki nokta arasından bir sayı seçmek istediğimizde herhangi bir değeri alabilecek x şans değişkeni uniform dağılışı göstermektedir. Sürekli üniform dağılımı ilgilenilen şans değişkeninin olasılık fonksiyonu hakkında bir bilgiye sahip olunmadığında ve verilen aralık içerisinde tanımlanan olayın eşit olasılıklarla ortaya çıkacağı varsayımı yapıldığında kullanışlıdır.

Sürekli Uniform Dağılımının Olasılık Yoğunluk Fonksiyonu HESAPLAMA KOLAYLIĞI!! Beklenen Değer ve Varyans

b = 10 ve a = 5 parametreli sürekli üniform dağılımı gösteren bir populasyondan n = 10000 hacimlik örnek için oluşturulan histogram.

Örnek: Bir demir-çelik fabrikasında üretilen çelik levhaların kalınlıklarının 150(a) ile 200(b) mm arasında değiştiği ve bunların sürekli uniform şans değişkenine uygun olduğu bilinmektedir. Levha kalınlıkları 155 mm altında çıktığı zaman tekrar üretime gönderildiğine göre bu dağılımın beklenen değerini ve varyansını bulunuz ve üretim sürecinde tekrar üretime gönderilen levhaların oranını bulunuz. a) Bu dağılışın ortalama ve varyansı; E(x)=(150+200)/2 =175 mm Var(x)=(200-150)2/12 = 208.33 mm2 bulunur. b) Üretime geri döndürülen ürünlerin oranı ise; P(150 < x < 155 )= (155-150) / (200-150) = 0,1 Ürünlerin %10’u üretime geri gönderilmektedir.

NORMAL DAĞILIM 59

Sürekli ve kesikli şans değişkenlerinin dağılımları birlikte ele alındığında istatistikte en önemli dağılım Normal dağılımdır. Normal dağılım ilk olarak 1733’te Moivre tarafından p başarı olasılığı değişmemek koşulu ile binom dağılımının limit şekli olarak elde edilmiştir. 1774’te Laplace hipergeometrik dağılımını limit şekli olarak elde ettikten sonra 19. yüzyılın ilk yıllarında Gauss 'un katkılarıyla da normal dağılım istatistikte yerini almıştır. 60

Normal dağılımın ilk uygulamaları doğada gerçekleşen olaylara karşı başarılı bir biçimde uyum göstermiştir. Dağılımın göstermiş olduğu bu uygunluk adının Normal Dağılım olması sonucunu doğurmuştur. İstatistiksel yorumlamanın temelini oluşturan Normal Dağılım, bir çok rassal süreçlerin dağılımı olarak karşımıza çıkmaktadır. Normal dağılımı kullanmanın en önemli nedenlerinden biri de bazı varsayımların gerçekleşmesi halinde kesikli ve sürekli bir çok şans değişkeninin dağılımının normal dağılıma yaklaşım göstermesidir. 61

Normal Dağılımın Özellikleri Çan eğrisi şeklindedir. Normal dağılımın moment çarpıklık katsayısı a3=0 dır. Yani normal dağılım simetriktir. Basıklık katsayısı a4=3 dür. Diğer tüm dağılımların basıklık ölçüsü bu katsayı ile karşılaştırılır. Normal dağılım eğrisi aşağıdaki fonksiyonla temsil edilir: = 3,14159... e = 2,71828 = populasyon standart sapması m = populasyon ortalaması 62

Parametreleri: 63

Normal eğri altındaki alan 1’e eşittir Normal eğri altındaki alan 1’e eşittir. Normal dağılımda herhangi bir X sürekli değişkeninin nokta tahmin sıfırdır. Çünkü normal eğri altında sonsuz sayıda X noktaları vardır. Bu yüzden ancak herhangi bir X değerinin X1 ile X2 arasında bulunma olasılığı hesaplanabilir. Bunun için foknksiyonun X1 den X2 ye integre edilmesi gerekir. Anakütle ortalaması ve satandart sapması farklı olduğu her problem için ayrı bir integrasyon işlemini uygulamak gerekir. Normal dağılım ortalama ve standart sapma parametrelerinin değişimi sonucu birbirinden farklı yapılar gösterir. Bu tür problemlerde kullanılmak üzere standart bir fonksiyon geliştirilmiştir.

Normal Dağılımda Olasılık Hesabı Olasılık eğri altında kalan alana eşittir!!!! ÖNEMLİ!!! 65

Standart Normal Dağılım Olasılık hesaplamasındaki zorluktan dolayı normal dağılış gösteren şans değişkeni standart normal dağlıma dönüştürülür. Böylece tek bir olasılık tablosu kullanarak normal dağılış ile ilgili olasılık hesaplamaları yapılmış olur. Standart normal dağılımda ortalama 0 , varyans ise 1 değerini alır. Standart normal değişken z ile gösterilir. 66

Standart Normal Şans Değişkeni X ~ N ( m , s2 ) Z ~ N ( 0 , 1) s s = 1 m m = 0 67

68

Olasılığın Elde Edilmesi Standart Normal Olasılık Tablosu (Kısmen) .02 Z .00 .01  = 1 Z 0.0 .0000 .0040 .0080 0.0478 0.1 .0398 .0438 .0478 0.2 .0793 .0832 .0871  = 0 0.12 Z Z 0.3 .1179 .1217 .1255 Olasılıklar

Parametre Değişikliklerinin Dağılımın Şekli Üzerindeki Etkisi 70

Standart Normal Dağılım Tablosunu Kullanarak Olasılık Hesaplama 71

72

SİMETRİKLİK ÖZELLİĞİNDEN DOLAYI 0’DAN EŞİT UZAKLIKTAKİ Z DEĞERLERİNİN 0 İLE ARASINDAKİ KALAN ALANLARININ DEĞERLERİ BİRBİRİNE EŞİTTİR. 73

74

75

Normal Dağılımın Standart Normal Dağılım Dönüşümü X ~ N ( m , s2 ) Z ~ N ( 0 , 1) za zb a m b 76

Standart Normal Dağılım Örnek P(3.8  X  5) = ? Normal Dağılım Standart Normal Dağılım  = 10  = 1 Z 0.0478 3.8  = 5 X -0.12  = 0 Z Z

Örnek P(2.9  X  7.1) = ?  = 10  = 1 2.9 5 7.1 X -.21 .21 Z .1664 X   2 . 9  5 Z     . 21  10 X   7 . 1  5 Normal Dağılım Z    . 21 Standart Normal Dağılım  10  = 10  = 1 Z .1664 .0832 .0832 2.9 5 7.1 X -.21 .21 Z

Standart Normal Dağılım Örnek P(X  8) = ? X   8  5 Z    . 30  10 Normal Dağılım Standart Normal Dağılım  = 10  = 1 Z .5000 .3821 .1179  = 5 8 X  = 0 .30 Z Z

Standart Normal Dağılım Örnek P(7.1  X  8) = ?   7 . 1  5 X Z    . 21  10 X   8  5 Normal Dağılım Z    . 30 Standart Normal Dağılım  10  = 10  = 1 Z .1179 .0347 .0832  = 5 X  = 0 Z 7.1 8 .21 .30 z =0.1179-0.0832=0.0347

Örnek: Bir işletmede üretilen vidaların çaplarının uzunluğunun, ortalaması 10 mm ve standart sapması 2 mm olan normal dağılıma uygun olduğu bilinmektedir. Buna göre rasgele seçilen bir vidanın uzunluğunun 8.9mm’den az olmasının olasılığını hesaplayınız. X ~ N ( 10 , 4 ) 81

Normal Dağılım Düşünce Alıştırması General Electric için Kalite Kontrol uzmanı olarak çalışıyorsunuz. Bir ampulün ömrü = 2000 saat, = 200 saat olan Normal dağılım göstermektedir. Bir ampulün A. 2000 & 2400 saat arası dayanma B. 1470 saatten az dayanma olasılığı nedir? Allow students about 10-15 minutes to solve this.

Standart Normal Dağılım Çözüm A) P(2000  X  2400) = ? X   2400  2000 Z    2 .  200 Normal Dağılım Standart Normal Dağılım  = 200  = 1 Z .4772  = 2000 2400 X  = 0 2.0 Z Z

Standart Normal Dağılım Çözüm B) P(X  1470) = ? X   1470  2000  Z    2 . 65  200 Normal Dağılım Standart Normal Dağılım  = 200  = 1 Z .5000 .0040 .4960 X 1470  = 2000 -2.65  = 0 Z Z

Bilinen Olasılıklar İçin Z Değerlerinin Bulunması P(Z) = 0.1217 ise Z nedir? Standart Normal olasılık Tablosu (Kısmen)  = 1 .01 Z .00 0.2 .1217 Z 0.0 .0000 .0040 .0080 0.1 .0398 .0438 .0478  = 0 .31 Z 0.2 .0793 .0832 .0871 Z 0.3 .1179 .1217 .1255

Bilinen Olasılıklar İçin X Değerlerinin Bulunması Normal Dağılım Standart Normal Dağılım  = 10  = 1 Z .1217 .1217 ?  = 5 X  = 0 .31 Z Z

1.Binom Dağılımının Poisson Dağılımına Yakınsaması

X şans değişkeni n ve p parametreli Binom Dağılımı göstermek üzere, n deneme sayısının büyük olduğu ayrıca p başarı olasılığının küçük olduğu durumlarda ( tercihen np ≤ 5 ) , x şans değişkeni ile ilgili olasılık hesaplamalarında kolaylık sağlaması açısından Binom Dağılımı yerine Poisson Dağılımı kullanılır. Her iki dağılımın beklenen değeri(ortalaması) birbirine eşitlenir ve buradan λ’nın tahmini elde edilir. Binom Dağılımı Poisson Dağılımı l = np

n = 1000 p =0.003 np = 3 ≤ 5 l = np = 1000(0.003)= 3 4 müşterinin, Örnek: Bir sigorta şirketinin müşterilerinin trafik kazası sonucunu hayatını kaybetme olasılığı 0.003’dür. Sigorta şirketinin müşterilerinden 1000 kişilik bir örnek alındığında, 4 müşterinin, En az iki müşterinin trafik kazasında hayatını kaybetme olasılığın hesaplayınız. n = 1000 p =0.003 np = 3 ≤ 5 l = np = 1000(0.003)= 3 a) P ( X = 4 ) = ? b) P ( X ≥ 2 ) = ? P ( X ≥ 2 ) = 1 – [ P ( X = 0) + P ( X = 1) ]

2.Binom Dağılımının Normal Dağılımına Yakınsaması

X şans değişkeni n ve p parametreli Binom Dağılımı göstermek üzere, n deneme sayısının büyük olduğu ayrıca p başarı olasılığının 0,5 değerine yaklaşması sonucunda( tercihen np > 5 ) , x şans değişkeni ile ilgili olasılık hesaplamalarında kolaylık sağlaması açısından Binom Dağılımı yerine Normal Dağılım kullanılır. Normal Dağılımın parametreleri olan m ve s2 tahmin edilirken Binom Dağılımının beklenen değer ve varyans formülleri dikkate alınır. Normal Dağılım Binom Dağılımı

Süreklilik Düzeltmesi Binom Dağılımı kesikli, normal dağılım ise sürekli bir dağılım olduğundan, binom dağılımının normal dağılıma yakınsadığı durumlar için olasılık hesaplamalarında süreklilik düzeltmesi kullanılması zorunluluğu vardır. Kesikli bir şans değişkeni gösteren dağılım sürekli bir dağılıma yakınsadığında tamsayı değerleri sürekli bir eksende tanımlanır.

n = 225 p = 0.20 np = 45 > 5 m = np = 225(0.20)= 45 s = Örnek: Bir kampüste okuyan öğrencilerin % 20 si sigara içmektedir. Öğrencilerden 225 kişilik bir örnek alındığında, 40’dan fazla kişinin sigara içme olasılığını, 30 kişinin sigara içme olasılığını hesaplayınız. n = 225 p = 0.20 np = 45 > 5 m = np = 225(0.20)= 45 s = a) P ( X ≥ 40) =? → P ( X ≥ 39.5) = ? b) P ( X = 30) =? → P ( 29.5 < X < 30.5) = ?

3.Poisson Dağılımının Normal Dağılımına Yakınsaması

X şans değişkeni λ parametreli Poisson Dağılımı göstermek üzere, λ parametresinin büyük olduğu durumlarda ( tercihen λ ≥ 20 ) , x şans değişkeni ile ilgili olasılık hesaplamalarında kolaylık sağlaması açısından Poisson Dağılımı yerine Normal Dağılım kullanılır. Normal Dağılımın parametreleri olan m ve s2 tahmin edilirken Poisson Dağılımının beklenen değer ve varyans formülleri dikkate alınır. Normal Dağılım Poisson Dağılımı

λ = 49 ≥ 20 m = λ = 49 s = 60’dan fazla uçak kalkmasının olasılığını, Örnek: Bir havaalanından 1 saatlik süre içerisinde ortalama olarak 49 adet uçak kalkmaktadır.1 saatlik süre içerisinde 60’dan fazla uçak kalkmasının olasılığını, 30 ile 40 adet arasında bir uçak kalkmasının olasılığını hesaplayınız. λ = 49 ≥ 20 m = λ = 49 s = a) P ( X > 60) = ? → P ( X > 59.5) = ? b) P ( 30 < X < 40) = ? → P (29.5 < X < 40.5) = ?