Doğrusal Olmayan Devreler, Sistemler ve Kaos

Slides:



Advertisements
Benzer bir sunumlar
Enerji Sistemlerinde Yöneylem Araştırması EBT Bahar Yarıyılı
Advertisements

END3061 SİSTEM ANALİZİ VE MÜHENDİSLİĞİ Güz Yarıyılı.
Sadık Sayim Oğuz Yelbey Ali Pala Mustafa Dursun
Projemizin İçeriği: Anahtarlanmış Doğrusal Sistemler
Mustafa Kösem Özkan Karabacak
TİTREŞİM PROBLEMLERİNİN DOĞRUSALLAŞTIRILMASI
Giriş Dikkat Altsistemi Yönlendirme Altsistemi Kısa Süreli Bellek Uzun Süreli Bellek Kontrol Birimi Kontrol Birimi F1 F2 ART nasıl çalışıyor? Mete Balcı,
ITY529S İTY’DE KARAR VERME
Lineer Cebir ve Uygulamaları Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Biyomedikal Sistemlerin Modellenmesi ve Kontrolü Neslihan Serap Şengör İ.T.Ü. Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Geçen hafta anlatılanlar Değişmez küme Değişmez kümelerin kararlılığı Bildiğimiz diğer kararlılık tanımları ve değişmez kümenin kararlılığı ile ilgileri.
Dinamik sistemin kararlılığını incelemenin kolay bir yolu var mı? niye böyle bir soru sorduk? Teorem 1: (ayrık zaman sisteminin sabit noktasının kararlılığı.
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
BİYOMEDİKAL MÜHENDİSLİĞİNDE İLERİ KONULAR Neslihan Serap Şengör Oda no: 1107 Tel:
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi
Devre ve Sistem Analizi Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Bir örnek : Sarkaç. Gradyen Sistemler E(x)’in zamana göre türevi çözümler boyunca Gradyen sistemlere ilişkin özellikler Teorem 6: (Hirsh-Smale-Devaney,
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
(Competitive Learning)
A1 sistemi A2 sistemi Hangisi daha hızlı sıfıra yaklaşıyor ? Hatırlatma.
Spring 2002Equilibrium of a Particle1 Bölüm 3- Parçacığın Dengesi.
Hatırlatma: Durum Denklemleri
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
Bu durumda lineer sistemin çözümleri neler olabilir? Tüm bu durum portrelerinde ortak bir şey var, ne? S. Haykin, “Neural Networks- A Comprehensive Foundation”2.
Uyarlanabilir Yankılaşım Teorisi (Adaptive Resonance Theory- Grossberg ) A crucial metatheoretical.
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
Kaos’a varmanın yolları DüzenKaos Nasıl? Umulmadık yapısal değişiklikler ile Bu nasıl oluşabilir? Ardışıl bir dizi dallanma ile, peryod katlanmasına yol.
Tanım: (Lyapunov anlamında kararlılık)
1. Mertebeden Lineer Devreler
Fizyolojik Sistemlerin Modellenmesi ve Kontrolü
Biyomedikal Sistemlerin Modellenmesi ve Kontrolü Neslihan Serap Şengör İ.T.Ü. Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Özkan Karabacak oda no:2307 tel.
ISIS IRIR ITIT Z=10e -j45, 3-fazlı ve kaynak 220 V. I R, I S, I T akımları ile her empedansa ilişkin akımları belirleyin.
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Düğüm-Eyer dallanması için ele alınan ön-örneğe yüksek mertebeden terimler eklense davranışı yapısal olarak değişir mi? Bu soru neden önemli Lemma sistemi.
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Müştak Erhan Yalçın oda no:2304.
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Uyarlanabilir Yankılaşım Teorisi
Devre ve Sistem Analizi
x* denge noktası olmak üzere x* sabit nokta olmak üzere
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Devre ve Sistem Analizi
(Self-Organizing Map- Kohonen )
Dinamik Sistem Dinamik sistem: (T, X, φt ) φt : X X a1) φ0=I
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Durum portresi Durum portresinde değişiklik olur mu, nasıl olur?
h homeomorfizm h homeomorfizm h 1-e-1 ve üstüne h sürekli h
Poincare Dönüşümü
Özdeğerler, Sıfırlar ve Kutuplar
Dinamik Yapay Sinir Ağı Modelleri
Dinamik Sistem T=R sürekli zaman Dinamik sistem: (T, X, φt ) T zaman
İlk olarak geçen hafta farklı a değerleri için incelediğiniz lineer sisteme bakalım: MATLAB ile elde ettiğiniz sonuçları analitik ifade ile elde edilen.
Bazı sorular: Topolojik eşdeğerlilik ne işimize yarayacak, topolojik
ART nasıl çalışıyor? Giriş Dikkat Altsistemi Yönlendirme Altsistemi F2
Geçen hafta ne yapmıştık
Bazı sorular: Topolojik eşdeğerlilik ne işimize yarayacak, topolojik
Kaos için bir yol: çek katla
Geçen haftaki tanımlar:
Sinir Hücresi McCulloch-Pitts x1 w1 x2 w2 v y wm xm wm+1 1 '
Hopfield Ağı Ayrık zaman Sürekli zaman
Hatırlatma Yörünge: Or(xo)
Düğüm-Eyer Dallanması
S. Haykin, “Neural Networks- A Comprehensive Foundation”,
Bazı Doğrusal Olmayan Sistemler
Yine en basit durumdan başlayarak inceleyelim:
ITY529S İTY’DE KARAR VERME
Tbastırma=5ms (Başlangıçta I1’ in süresi)
Sunum transkripti:

Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no:0212 285 3610 sengorn@itu.edu.tr Özkan Karabacak oda no:2307 tel no:0212 285 6729 karabacak@itu.edu.tr

Doğrusal Olmayan Devreler, Sistemler ve Kaos 4 Şubat 2015- 18 Mart 2015 Neslihan Serap Şengör (7 hafta) 1 Ödev % 15 Yarıyıliçi Sınavı 25 Mart 2015 % 25 01 Nisan 2015- 6 Mayıs 2015 Özkan Karabacak (6 hafta) 1 Ödev % 20 Yarıyılsonu Sınavı % 40

Yararlanılan Kaynaklar H.K.Khalil, “Nonlinear Systems”, 3rd Edition, Pearson Education, 2000. Y.A. Kuznetsov, “Elements of Applied Bifurcation Theory”, Springer, 2004. J. Guckenheimer, P. Holmes, “Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields”, Springer-Verlag, 1983. S. Wiggens, “Introduction to Applied Nonlinear Dynamical Systems and Chaos”, Springer, 2003. S.H. Strogatz, “Nonlinear Dynamics and Chaos”, Addison-Wesley Pub. Comp., 2000. E. Ott, “Chaos in Dynamical Systems”, Cambridge University Press, 1993. P.G. Drazin, “Nonlinear Systems”, Cambridge University Press, 1993.

Yararlanılacak Araç XPP/XPPAUT Dinamik sistemleri çözmek, durum portreleri, dallanma diyagramlarını elde etmek için kullanılabilecek bir araç B. Ermentrout, “Simulating, Analyzing, and Animating Dynamical systems”, siam,2002. http://www.math.pitt.edu/~bard/xpp/whatis.html

Xppaut Çalıştırmak İçin Gerekenler A. Yiğit Xppaut Çalıştırmak İçin Gerekenler Xppaut, “xpp” ve “auto” isimli iki parçadan oluşur. Birbirleri arasında daima geçiş yapabilirsiniz. “auto”, dallanma diyagramını hesaplamak için kullanılır. http://www.math.pitt.edu/~bard/xpp/xpp.html adresinden indirilebilir. xppaut_yüklediğiniz_dizin\xppaut\windows\xppall dizini altında xpp.bat dosyası mevcuttur. Bu dosya içerisine uygulama ile ilgili adreslerin doğru yazılması gerekmektedir. Örneğin benim makinemde xppaut aşağıda olan adresde yüklüdür. “G:\24_mart_2008_new_data\Doktora”. Dolayısıyla G:\24_mart_2008_new_data\Doktora\xppaut\windows\xppall adresinde olan xpp.bat dosyasının içeriği aşağıdaki şekildedir. set BROWSER=C:\Program Files\Internet Explorer\iexplore.exe Set XPPHELP=G:\24_mart_2008_new_data\Doktora\xppaut\windows\xppall\help\xpphelp.html set DISPLAY=127.0.0.1:0.0 set HOME=G:\24_mart_2008_new_data\Doktora\xppaut\windows\xppall G:\24_mart_2008_new_data\Doktora\xppaut\windows\xppall\xppaut %1 %2 %3 pause

Xppaut çalıştığında nasıl bir ekran açılır? A. Yiğit Xppaut çalıştığında nasıl bir ekran açılır?

Örneklerle Dallanma Diyagramı Oluşturma A. Yiğit Örneklerle Dallanma Diyagramı Oluşturma 11 Şubat Çarşamba günü saat 15:30-17:15arası Rahmi Elibol bilgi verecek

Neden doğrusal olmayan devreler, sistemler ve kaos? Virtually, all physical systems are nonlinear in nature. M. Vidyasagar O zaman neden hep lineer devreler ve sistemler ile ilgilenildi? “. . . not to produce the most comprehensive descriptive model but to produce the simplest possible model that incorporates the major features of the phenomenon of interest.” Howard Emmons Burada lineer sistemlerin cozumunun analitik elde edilebildigini, ve lineer sistemlerin davranisini incelemek icin genel yontemlerin oldugunu belirtmek gerek. Ve once bir lineer sistemler ile ne mumkun ona bakalim diyerek devam edecegim

Dinamik Sistem Şimdiki zaman ve geçmiş zaman 1888-1965 Şimdiki zaman ve geçmiş zaman Belki birliktedir gelecek zamanda, Ve gel-zamanı kapsar geçmiş zaman. Zamanların hepsi ölümsüzce varsa Zamanların hiçbiri kurtarılamaz. Ne olabilirdi, bir soyutlamadır ki Sürekli bir olanak halinde kalır Bir varsayım dünyasında ancak. Ne olabilirdi ile ne oldu soruları Tek bir soru imler ki daima vardır. Suphi Aytimur Time present and time past Are both present in time future, And time future contained in time past. If all time is eternally present All time is unredeemable. What might have been is an abstraction Remaining a perpetual possibility Only in a world of speculation. What might have been and What has been Point to one end, which is always present. T.S. Eliot

Dinamik Sistem Sistemin şu an ki çıkışlarını geçmişdeki girişleri ve çıkışları belirliyorsa... Ayrık zaman-fark denklemleri Dinamik sistem gösterimleri Sürekli zaman-diferansiyel denklemler

Lineer sistemi hatırlıyalım... Hatırlatma Lineer sistemi hatırlıyalım... Başka nasıl ifade ediyoruz? durum değişkeni ilk koşul çıkış değişkeni giriş değişkeni Bu değişkenlere ilişkin başka neyi belirtmemiz gerek........ Bu sistemin çözümü..... Burada var olan fiziksel bir yapinin matematiksel modelinin ne oldugu nasil elde edildigine iliskin genel sozler soyleyecegim bu ders kapsaminda dinamik sistemler ile ugrasilacagindan hem ayrik hem de surekli zamani beraber ele alacagimizdan bahsedecegim. Dinamik sistem nedir ondan kisaca soz edecegim, matematiksel modelin nasil farkli yaklasimlar ile elde edildiginden de bahsedecegim.

Ayrık zamanda lineer sistemi hatırlıyalım... Hatırlatma Ayrık zamanda lineer sistemi hatırlıyalım... Bu sistemin çözümü.....

Çözümü bir daha yazarsak özvektörler Hatırlatma Bir özel hal: Otonom sistem Çözümü bir daha yazarsak özvektörler özdeğerler Çözüm, özvektörler ve özdeğerler ile nasıl değişir?

Özvektörleri aynı özdeğerleri farklı iki sistem Hatırlatma Özvektörleri aynı özdeğerleri farklı iki sistem Hangisi daha hızlı sıfıra yaklaşıyor ? A1 sistemi A2 sistemi

Özdeğerleri aynı özvektörleri farklı iki sistem Hatırlatma Özdeğerleri aynı özvektörleri farklı iki sistem B1 sistemi B2 sistemi Hızlarında bir farklılık var mı? B1 sistemi B2 sistemi

Bu durumda lineer sistemin çözümleri neler olabilir? Hatırlatma Bu durumda lineer sistemin çözümleri neler olabilir? S. Haykin, “Neural Networks- A Comprehensive Foundation”2nd Edition, Prentice Hall, 1999, New Jersey. Tüm bu durum portrelerinde ortak bir şey var, ne?

Otonom lineer sistem için başka ne diyebiliriz? Hatırlatma Otonom lineer sistem için başka ne diyebiliriz? Özel bir çözüm: denge noktası Denge noktasının Lyapunov anlamında kararlılığı Tanım: Lyapunov anlamında kararlılık sistemine ilişkin bir denge noktası olsun. Verilen herhangi bir için eşitsizliği eşitsizliğini gerektirecek şekilde bir bulunabiliyorsa denge noktası Lyapunov anlamında kararlıdır. Sistemin kararliligi Ozdegerlerin yerini bilmek yeterli Ve Lyapunov anlamında kararlılığı lineer sistemde anlamak için.....