Istatistik.

Slides:



Advertisements
Benzer bir sunumlar
Merkezi Eğilim ve Merkezi Dağılım Ölçüleri
Advertisements

EĞİTİMDE ÖLÇME & DEĞERLENDİRME -12-
MERKEZİ YIĞILMA (EĞİLİM) ÖLÇÜLERİ
Ölçmeyle İlgili Temel İstatistikler
Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri
Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri
Tanımlayıcı İstatistikler
Bu slayt ‘ten indirilmiştir.
İstatistikte Temel Kavramlar
Tıp alanında kullanılan temel istatistiksel kavramlar
ÖLÇME VE DEĞERLENDİRME DERSİ
Merkezi Eğilim (Yığılma) Ölçüleri
İstatistikte Bazı Temel Kavramlar
Yard.Doç.Dr. Sertel Altun
Değişkenlik Ölçüleri.
EĞİTİMDE ÖLÇME VE DEĞERLENDİRME
Yaygınlık Ölçüleri Bir dağılımdaki değerlerin ortalamaya olan uzaklıkları farklılıklar gösterir. Bu farklılıkların derecesi dağılımın yaygınlığı kavramını.
Ölçme sonuçları üzerinde yapılan istatiksel işlemler
 Merkezi eğilim ölçüleri: Ortalama Ortanca Mod  Ortalama: İki veya ikiden fazla sayının toplamının toplanan sayıların adedine bölünmesiyle elde edilen.
Merkezi Eğilim (Yer) Ölçüleri
EĞİTİMDE ÖLÇME VE DEĞERLENDİRME
Merkezi Eğilim Ölçüleri
Ölçme Sonuçları Üzerinde İstatiksel İşlemler
Ölçme Sonuçlarının Değerlendirilmesi
21 - ÖLÇME SONUÇLARI ÜZERİNE İSTATİSTİKSEL İŞLEMLER
ARAŞTIRMA TEKNİKLERİ.
Asimetri ve Basıklık Ölçüleri
NEDEN İSTATİSTİK? 1.
Sıklık Tabloları ve Tek Değişkenli Grafikler
İstatistik 1.Bölüm EĞITSEL YAZıLıM GELIŞTIRME VE DEĞERLENDIRME.
İSTATİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ (ORTALAMALAR)
Asimetri ve Basıklık Ölçüleri
Tanımlayıcı İstatistikler
ÖĞRENME AMAÇLARI Veri analizi kavramı ve sağladığı işlevleri hakkında bilgi edinmek Pazarlama araştırmalarında kullanılan istatistiksel analizlerin.
Olasılık Dağılımları ve Kuramsal Dağılışlar
Uygulama 3.
Nicel Analizlere Giriş
Bölüm 03 Sayısal Tanımlama Teknikleri
Merkezi Eğilim (Yığılma) Ölçüleri
İstatistik Sunum.
Analitik olmayan ortalamalar Bu gruptaki ortalamalar serinin bütün değerlerini dikkate almayıp, sadece belli birkaç değerini, özellikle ortadaki değerleri.
Konum ve Dağılım Ölçüleri BBY252 Araştırma Yöntemleri Güleda Doğan.
ÖLÇME VE DEĞERLENDİRME DERSİ
MATEMATİK ÖĞRENEBİLİR
Ölçme ve Değerlendirme
Yrd.Doç. Dr. Özcan PALAVAN
ARAŞTIRMA YÖNTEM ve TEKNİKLERİ
TEMEL BETİMLEYİCİ İSTATİSTİKLER
Ölçme Sonuçları Üzerinde İstatistiksel İşlemler
Yrd.Doç. Dr. Özcan PALAVAN
Merkezi Eğilim Ölçüleri
MERKEZİ EĞİLİM(YIĞILMA) ÖLÇÜLERİ
İSTATİSTİĞE GİRİŞ.
DEĞİŞİM ÖLÇÜLERİ.
Merkeze Yayılma Ölçüleri
B- Yaygınlık Ölçüleri Standart Sapma ve Varyans Değişim Katsayısı
Temel Kavramlar Değişken: Değişik değerler alabilen objelere, özelliklere yada durumlara denir. Sürekli değişken: iki ayrı ölçüm arasını kuramsal olarak.
Uygulama I.
Tıp Fakültesi UYGULAMA 2
ÖLÇME-DEĞERLENDİRME 8. SINIF
Ölçme Sonuçları Üzerinde İstatistiksel İşlemler
İSTATİSTİK Yrd. Doç. Dr. Cumhur TÜRK
ÖLÇME SONUÇLARI ÜZERİNE İSTATİSTİKSEL İŞLEMLER
İstatistik Ders Notları.
TEST İSTATİSTİKLERİ.
STANDART SAPMA.
DAVRANIŞ BİLİMLERİNDE ARAŞTIRMA (YÜKSEK LİSANS)
Sunum transkripti:

istatistik

Konu Özeti İstatistik Nedir? Neden İstatistik? İnsanlar istatistiği ne zamandır kullanıyorlar? İstatistikte Bazı Temel Kavramlar İstatistiksel Verileri Tasnif Etme Korelasyon Grafik Analizi

Herkes biraz istatistik bilmeli!

Herkes biraz istatistik bilmeli! Hangisi Başarılı? Üniversite Oran(%) Marmara 75 Balıkesir 85 Gazi 74 Niğde 100

Herkes biraz istatistik bilmeli! Hangisi Başarılı? Üniversite Sınava giren Kazanan Oran(%) Marmara 60 45 75 Balıkesir 55 47 85 Gazi 62 46 74 Niğde 2 100

Herkes biraz istatistik bilmeli! Hangisi Başarılı? Lise Üniversiteye giren öğrenci sayısı A 120 B 90 C 62

Herkes biraz istatistik bilmeli! Hangisi Başarılı? Lise Üniversiteye giren öğrenci sayısı Sınava giren öğrenci sayısı Oran(%) B 90 210 42 C 62 260 24 A 120 630 19

Hangi firmanın otobüsleri daha çok kaza yapıyor? Herkes biraz istatistik bilmeli! Hangi firmanın otobüsleri daha çok kaza yapıyor? Firma Kaza / yıl A 20 B 7

Hangi firmanın otobüsleri daha çok kaza yapıyor? Herkes biraz istatistik bilmeli! Hangi firmanın otobüsleri daha çok kaza yapıyor? Firma Yolcu / gün Kaza / yıl Oran(%) A 500 20 4.0 B 120 7 5.8

İstatistik Nedir?

İstatistik Nedir? İstatistik, belirli amaçlar için veri toplama, toplanan verileri tasnif etme, çözümleme ve yorumlama bilimidir. İstatistik sayısal verileri değerlendiren bir bilim dalı

Neden İstatistik?

Neden İstatistik? Ne kadar? Ne zaman? Nerede? Nasıl? Kaç tane? Hangi oranda? Sorularına yanıt arar

İstatistik, çevremizde olup bitenleri sayılarla ifade etmede yardımcı olur.

İnsanlar İstatistiği Ne zamandır Kullanıyorlar? 1445 - zar atma, şans oyunları 17.Yüzyıl ortaları, istatistik ilk kez ders kitaplarına girdi

İstatistikte Bazı Temel Kavramlar

İstatistikte Bazı Temel kavramlar Evren Gözlem alanına giren obje ya da bireylerin tümü Örneklem Bir evrenden seçilmiş daha küçük sayıdaki obje ya da bireylerin oluşturduğu grup

İstatistikte Bazı Temel kavramlar Değişken Her gözleme göre farklı değerler alabilen objelere, özelliklere ya da durumlara denir Değişkenler nicel ya da nitel olabilir. Nitel veriler Sayısal veriler -kesikli sayısal veriler (maç kazanma syısı) -sürekli sayısal veriler (boy, kilo) Nitelik ve sayısal veriler arasındaki ilişki (boy sınıflandırması)

İstatistikte Bazı Temel kavramlar Ölçme objelere ya da bireylere belirli bir değere sahip oluş derecelerini belirtmek için sembolik değerler verme işlemidir. Değişkenler hakkında bilgi edinmek için yapılır Ölçüm Ölçme sonucunda elde edilen değer

İstatistikte Bazı Temel kavramlar Anlamlı rakam X=2.8 1 2 3 4 5 6 X=5.0 5 cm = 5,0cm

İstatistikte Bazı Temel kavramlar Sayıları yuvarlama 5,387123 = 5,39 = 5,4 = 5

Verilerin Sınıflandırılması 2,4,4,4,6,6,8,10,12,16,18 En büyük değerden en küçük değer çıkarılarak veri aralığı tespit edilir. İstenen sınıf sayısına bölünerek 2-18=16/8=2 veri aralığı 2 dir. 2-4 5-7 8-10 29.04.2017

Frekans Dağılımları Gözlem ya da kayıt yoluyla elde edilen ve işlenmemiş, anlamlı hale getirilmemiş sayılar yığını “ham veri” olarak kabul edilir. Ham verilerin düzenlenmesinde, özetlenmesinde, anlamlı ve anlaşılır hale getirilmesinde en sık kullanılan yöntemlerden biri, bu verilerin frekans dağılımlarının verilmesidir. Frekans dağılımlarının verilmesi ile karışık halde bulunan puanlamalar derlenir, puanlar yüksekten düşüğe ya da tersi biçimde sıralanabilir ve puanlar hakkında yorumlar yapılabilir. 29.04.2017 29.04.2017 23 23

Frekans Dağılımları Ham Puanlar Sıralanmış Puanlar 29.04.2017 24 24

Basit Frekans Dağılımı Basit frekans dağılımı, her puan değerinin kaç sefer tekrarlandığını gösterir. Frekans “f” harfi ile gösterilir. Frekans tablosu hazırlanırken; tüm puanlar gösterilir. İstenirse öğrencilerin almadıkları diğer puanlar da verilebilir. Toplamalı frekans, frekans değerlerinin ard arda toplanması ile elde edilir. 29.04.2017 29.04.2017 25 25

29.04.2017 29.04.2017 26 26

Merkezi Eğilim (Yığılma) Ölçüleri Aritmetik Ortalama Mod (Tepe Değer) Medyan (Ortanca) 29.04.2017 27 27

Aritmetik Ortalama Puan toplamlarının veri sayısına bölümüdür. Örnek: 95,88,73,67,59,46,35,26,23 Ortalama: 56.88 29.04.2017 28

Mod (Tepe Değer) Mod ya da tepe değer, bir puan dağılımında en çok tekrar eden, yani frekansı en fazla olan puan ya da ölçümdür. Örnek: 60,72,82,72,61,81,72 ise Mod=72’dir. Güvenirliğinin düşük olması nedeniyle nadiren kullanılır. Çünkü bazı durumlarda dağılımın çarpık olması nedeniyle birden fazla mod bulunabilir. 29.04.2017 31 31

29.04.2017 29.04.2017 32 32

Tepe Değer (Mod) ile ilgili bazı önemli noktalar 1) Bir puan dağılımında puanların frekansı aynı ise dağılımın modu hesaplanamaz (mod yoktur). Örneğin; 1,1,1,5,5,5,7,7,7 puan dağılımının modu yoktur. 2) Bir dizi puan dağılımında ardı ardına gelen iki puanın frekansı birbirine eşitse bu durumda mod frekansı eşit olan puanların ortalamasıdır. Örneğin; 2,2,3,3,3,5,5,5,9,9 puan dağılımında 3 ve 5 puanlarının frekansları birbirine eşittir. Bu durumda mod (3+5)/2=4 olarak bulunur. Dizinin modu 4’tür. 3) Bir dizi puan dağılımında frekansı eşit fakat ardı ardına gelmeyen puanlar varsa, bu durumda dizinin iki modu olur. Örneğin; 2,3,3,3,4,5,6,6,6,7 puan dağılımının 3 ve 6 olmak üzere iki modu (bimodal) bulunmaktadır. 33 29.04.2017 33

Medyan (Ortanca) Büyüklük sırasına göre dizilmiş puanlar dizisinin tam ortasına düşen puandır. Örnek: 95,88,73,67,59,46,35,26,23 Medyan: 59 Puanların sayısı çift ise: ‘inci değerin ortalaması alınır Örnek: 95,88,73,67,59,46,35,26,23,12 Medyan: 52.5 29.04.2017 34

Medyan (Ortanca) Örnek: 4, 7, 8, 11, 12, 15, 19 ise Medyan=(n+1)/2=(7+1)/2=8/2=4. sıradaki 11’dir. Örnek: 3, 5, 7, 9 ise Medyan=n/2=4/2=2. sıradaki (5+7)/2=6’dır. 29.04.2017 35 35

Medyan (Ortanca) Medyan sıralamalı ölçeklerle elde edilen veriler için uygun bir merkezi eğilim ölçüsüdür. Medyanda ölçümlerin her birinin puan değerinden çok dağılım içindeki sırası önemlidir. 29.04.2017 36 36

29.04.2017 29.04.2017 40 40

Dağılım (Değişim, Yayılma) Ölçüleri Yayılma Ölçüleri: Verilerin yığılma gösterdikleri noktadan ne kadar uzakta olduklarını, yani: merkeze yığılma ölçüsüne göre ne kadar dağıldıklarını belirler Ranj (dizi genişliği) Çeyrek Sapma Standart Sapma 29.04.2017 41

Puanların sıralanmış olması gerekmez Ranj (Dizi Genişliği) Bir veri grubunda en yüksek puan ile, en düşük puan arasındaki farktır. Puanların sıralanmış olması gerekmez Grubun homojen ya da heterojen bir dağılım gösterdiği hakkında bilgi verir. Örnek: 78,89,56,36,48,92,59,60 Ranj: 92-36=56 29.04.2017 42

Ranj (Dizi Genişliği) Örnek Birinci Dağılım: 59, 59, 59, 60, 61, 61, 61 ise Ranj=? 61-59=2 İkinci Dağılım: 30, 40, 50, 60, 70, 80, 90 ise Ranj=? 90-30=60 Bu iki dağılımda aritmetik ortalama ve medyanlar eşit olmasına karşın ranjları farklıdır. Dağılımın ranjı azaldıkça dağılımdaki puanlar birbirine yaklaşır ya da benzeşir, ranj arttıkça puanlar birbirinden uzaklaşır ya da puanlar arası fark artar. 29.04.2017 43

Çeyrek Sapma Çeyrek sapma, bir dağılımdaki üçüncü çeyrek (75.yüzdelik) ile birinci çeyrek (25.yüzdelik) arasındaki farkın yarısına eşittir. Aritmetik ortalama yerine medyanın kullanıldığı durumlarda kullanılması uygundur. 29.04.2017 49 49

25. yüzdelik için (Y25)= 20(25/100) = 5. puan (25) Aşağıda 20 öğrencinin İngilizce sınavından aldığı notlar küçükten büyüğe doğru sıralanarak verilmiştir. Çeyrek sapmayı hesaplayalım: 15,17,20,21,25,30,33,40,43,47,50,55,57,60,65,70,73,77,80,84 25. yüzdelik için (Y25)= 20(25/100) = 5. puan (25) 75. yüzdelik için (Y75)= 20(75/100) = 15. puan (65) Bu durumda çeyrek sapma  (65-25)/2=20 olur. 29.04.2017 50 50

Örnek: Öğrencilerin finalden aldığı notlar şu şekilde verilmiştir: 30, 41, 46, 56, 68, 71, 71, 74, 80, 80, 80, 80, 82, 88, 88, 91, 93, 98, 99 Cevap: Q1 (25. Yüzdelik) = 19 (25/100) = 4.75 yani 5. puan = 68 Q3 (75. Yüzdelik) = 19 (75/100) = 14.25 yani 14. puan =88 Q = (88-68) / 2 Q= 20 / 2 = 10