Lineer Direnç Devreleri Lineer, zamanla değişmeyen direnç elemanları Bağımsız kaynaklar Amaç: Özel bir grup direnç elemanlarından oluşmuş devrelerin çözümü.

Slides:



Advertisements
Benzer bir sunumlar
Analiz Yöntemleri Çevre Yöntemi
Advertisements

DEVRE TEOREMLERİ.
Süperpozisyon Teoremi Thevenin Teoremi Norton Teoremi
DEVRE TEOREMLERİ.
Projemizin İçeriği: Anahtarlanmış Doğrusal Sistemler
Analiz Yöntemleri Çevre Yöntemi
Laplace Transform Part 3.
Mustafa Kösem Özkan Karabacak
Bu slayt, tarafından hazırlanmıştır.
Analiz Yöntemleri Düğüm Analiz
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Lineer Direnç Devreleri Lineer, zamanla değişmeyen direnç elemanları Bağımsız kaynaklar Amaç: Özel bir grup direnç elemanlarından oluşmuş devrelerin çözümü.
Elektrik Devrelerinin Temelleri dersinde ne yapacağız? Amaç: Fiziksel devrelerin elektriksel davranışlarını öngörme akım ve gerilim Hatırlatma Teori oluşturken.
Hatırlatma: Durum Denklemleri
Kararlılık Sıfır giriş kararlılığı Tanım: (Denge noktası) sisteminin sabit çözümleri, sistemin denge noktalarıdır. nasıl belirlenir? Cebrik denkleminin.
Bir başka ifade biçimi: Blok Diyagramları
Tanım: (Lyapunov anlamında kararlılık)
1. Mertebeden Lineer Devreler
Zamanla Değişmeyen Lineer Kapasite ve
Lineer, Zamanla değişmeyen 2- Kapılılar Zorlanmış çözüm ile ilgileniyor İlk koşullar sıfır 1- kapılılar için tanımladığımız Thevenin-Norton eşdeğerlerini.
ISIS IRIR ITIT Z=10e -j45, 3-fazlı ve kaynak 220 V. I R, I S, I T akımları ile her empedansa ilişkin akımları belirleyin.
Toplamsallık ve Çarpımsallık Özelliği
Devre Denklemleri: Genelleştirilmiş Çevre Akımları Yöntemi
Toplamsallık ve Çarpımsallık Özelliği
+ + v v _ _ Lineer Olmayan Direnç Bazı Özel Lineer Olmayan Dirençler
GrafTeorisine İlişkin Bazı Tanımlar
Tanım: ( Temel Çevreler Kümesi)
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
Thevenin (1883) ve Norton (1926) Teoremleri
Genelleştirilmiş Çevre Akımları Yöntemi
2-Uçlu Direnç Elemanları
Elektrik Devrelerinin Temelleri dersinde ne yapacağız? Amaç: Fiziksel devrelerin elektriksel davranışlarını öngörme akım ve gerilim Hatırlatma Teori oluşturken.
Negatif-Pozitif Geribesleme Devreleri Lineer bölgede v in vdvd ioio +vo+vo v in ioio +vo+vo +-+- vdvd.
3. Kirchhoff’un Akım Yasası (KAY)
Elektrik Devrelerinin Temelleri
Devre ve Sistem Analizi
Devre Fonksiyonu: Özellik: Herhangibir devre fonksiyonunun genliği w’nın çift fonksiyonudur, fazı da her zaman w’nın tek fonksiyonudur. Tanıt: ve Lemma’dan.
Devre Denklemleri KAY: KGY: ETB:.
Eleman Tanım Bağıntıları
Genelleştirilmiş Çevre Akımları Yöntemi
İşlemsel Kuvvetlendirici
Eleman Tanım Bağıntıları
npn Bipolar Tranzistör Alçak Frekanslardaki Eşdeğeri
Genelleştirilmiş Çevre Akımları Yöntemi
Seri ve Paralel 2-uçlu Direnç Elemanlarının Oluşturduğu 1-Kapılılar
Hatırlatma: Kompleks Sayılar
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
+ + v v _ _ Hatırlatma Lineer Olmayan Direnç
_ _ Bazı Lineer 2-kapılı Direnç Elemanları
+ - i6 =2i i ik1 =cos2t Vk2 =sin(3t+15) R1 C6 ik1 Vk2 R1 = R1 = 1 ohm
Çok-Uçlu Direnç Elemanları
Hatırlatma * ** ***.
G grafının aşağıdaki özellikleri sağlayan Ga alt grafına çevre denir:
Lineer olmayan 2-kapılı Direnç Elemanları
_ _ _ DC Çalışma Noktası Çözüm i tek çözüm çok çözüm + çözüm yok N Is
SSH’de Güç ve Enerji Kavramları
Sistem Özellikleri: Yönetilebilirlik, Gözlenebilirlik ve Kararlılık
Lemma 1: Tanıt: 1.
Teorem: (Tellegen Teoremi) ne elemanlı bir G grafında KAY’sını
Bir ağaç seçip temel kesitlemeleri belirleyelim Hatırlatma
Matrise dikkatle bakın !!!!
Thevenin (1883) ve Norton (1926) Teoremleri
Teorem: (Tellegen Teoremi) ne elemanlı bir G grafında KAY’sını
NET 105 DOĞRU AKIM DEVRE ANALİZİ Öğr. Gör. Taner DİNDAR
ELEKTRİK DEVRE TEMELLERİ
İşlemsel Kuvvetlendirici
ELEKTRİK DEVRE TEMELLERİ
Sunum transkripti:

Lineer Direnç Devreleri Lineer, zamanla değişmeyen direnç elemanları Bağımsız kaynaklar Amaç: Özel bir grup direnç elemanlarından oluşmuş devrelerin çözümü için yöntem geliştirmek Yararlanılacaklar: KAY KGY ETB Belirlenmesi gereken büyüklükler: Genelleştirilmiş Düğüm Gerilimleri Yöntemi Bu denklem ne söylüyor? Düğüm gerilimleri Tüm eleman gerilimleri Tüm eleman akımları Hatırlatma

Özel Durum: lineer, zamanla değişmeyen iki uçlu direnç elemanları ve bağımsız akım kaynaklarının bulunduğu devreler. Yararlanılacaklar: KAY KGY ETB Yöntem: 1. Adım: düğüm için KAY’nı yaz 2. Adım: eleman tanım bağıntılarını yerleştir 3. Adım: eleman gerilimlerini düğüm gerilimleri cinsinden yaz 4. Adım: düğüm gerilimlerini bul Hatırlatma

Genel Durum: lineer, zamanla değişmeyen gerilim kontrollü direnç elemanları bağımsız akım kaynakları lineer, zamanla değişmeyen gerilim kontrollü olmayan direnç elemanları bağımsız gerilim kaynakları Genel Durum: lineer, zamanla değişmeyen iki uçlu direnç elemanları bağımsız akım kaynakları lineer, zamanla değişmeyen çok uçlu direnç elemanları bağımsız gerilim kaynakları Birinci grup elemanlar İkinci grup elemanlar Yöntem: 1. Adım: düğüm için KAY’nı yaz 2. Adım: 1. grup elemanların eleman tanım bağıntılarını yerleştir, 2. grup elemanların eleman tanım bağıntılarını yaz. 3. Adım: eleman gerilimlerini düğüm gerilimleri cinsinden yaz 4. Adım: düğüm gerilimlerini ve ikinci grup elemanların akımlarını bul Hatırlatma

Genelleştirilmiş Çevre Akımları Yöntemi Bu denklem ne söylüyor? Çevre akımları Tüm eleman akımları Tüm eleman gerilimleri Özel Durum: lineer, zamanla değişmeyen iki uçlu direnç elemanları ve bağımsız gerilim kaynaklarının bulunduğu devreler. Yararlanılacaklar: KAY KGY ETB

Yöntem: 1. Adım: göz için KGY’ını yaz 2. Adım: eleman tanım bağıntılarını yerleştir 3. Adım: eleman akımlarını çevre akımları cinsinden yaz 4. Adım: çevre akımlarını bul Genel Durum: lineer, zamanla değişmeyen akım kontrollü direnç elemanları bağımsız gerilim kaynakları lineer, zamanla değişmeyen akım kontrollü olmayan direnç elemanları bağımsız akım kaynakları Genel Durum: lineer, zamanla değişmeyen iki uçlu direnç elemanları bağımsız gerilim kaynakları lineer, zamanla değişmeyen çok uçlu direnç elemanları bağımsız akım kaynakları Birinci grup elemanlar İkinci grup elemanlar

Yöntem: 1. Adım: göz için KGYı’nı yaz 2. Adım: 1. grup elemanların eleman tanım bağıntılarını yerleştir, 2. grup elemanların eleman tanım bağıntılarını yaz. 3. Adım: eleman akımlarını çevre akımları cinsinden yaz 4. Adım: çevre akımlarını ve ikinci grup elemanların gerilimlerini bul

Toplamsallık ve Çarpımsallık Özelliği Teorem: (Toplamsallık) Lineer direnç elemanları+Bağımsız kaynaklar 1.Grup bağımsız kaynaklar 2. Grup bağımsız kaynaklar 1. Grup bağımsız kaynaklar devrede, 2. grup bağımsız kaynaklar devre dışı iken devre çözülsün 2. Grup bağımsız kaynaklar devrede, 1. grup bağımsız kaynaklar devre dışı iken devre çözülsün Devrede tüm bağımsız kaynaklar varken ki çözüm Tanıt: Devrede ki tüm bağımsız kaynakları

1.Grup bağımsız kaynaklar devrede 2. Grup bağımsız kaynaklar devrede

Teorem: (Çarpımsallık) Lineer direnç elemanları+Bağımsız kaynaklar var iken devre çözülsün Lineer direnç elemanları+Bağımsız kaynakların değeri k katına çıkarılsın ve devre çözülsün