Genelleştirilmiş Çevre Akımları Yöntemi

Slides:



Advertisements
Benzer bir sunumlar
DEVRE TEOREMLERİ.
Advertisements

Süperpozisyon Teoremi Thevenin Teoremi Norton Teoremi
DEVRE TEOREMLERİ.
Projemizin İçeriği: Anahtarlanmış Doğrusal Sistemler
Bu slayt, tarafından hazırlanmıştır.
DEVRE TEOREMLERİ.
Devre ve Sistem Analizi
Devre ve Sistem Analizi
Devre ve Sistem Analizi Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Eleman Tanım Bağıntıları Direnç Elemanı: v ve i arasında cebrik bağıntı ile temsil edilen eleman v i q Ø direnç endüktans Kapasite memristor Endüktans.
Lineer Direnç Devreleri Lineer, zamanla değişmeyen direnç elemanları Bağımsız kaynaklar Amaç: Özel bir grup direnç elemanlarından oluşmuş devrelerin çözümü.
Elektrik Devrelerinin Temelleri dersinde ne yapacağız? Amaç: Fiziksel devrelerin elektriksel davranışlarını öngörme akım ve gerilim Hatırlatma Teori oluşturken.
Hatırlatma: Durum Denklemleri
Kararlılık Sıfır giriş kararlılığı Tanım: (Denge noktası) sisteminin sabit çözümleri, sistemin denge noktalarıdır. nasıl belirlenir? Cebrik denkleminin.
Tanım: (Lyapunov anlamında kararlılık)
1. Mertebeden Lineer Devreler
Zamanla Değişmeyen Lineer Kapasite ve
Lineer, Zamanla değişmeyen 2- Kapılılar Zorlanmış çözüm ile ilgileniyor İlk koşullar sıfır 1- kapılılar için tanımladığımız Thevenin-Norton eşdeğerlerini.
ISIS IRIR ITIT Z=10e -j45, 3-fazlı ve kaynak 220 V. I R, I S, I T akımları ile her empedansa ilişkin akımları belirleyin.
Toplamsallık ve Çarpımsallık Özelliği
Devre Denklemleri: Genelleştirilmiş Çevre Akımları Yöntemi
Toplamsallık ve Çarpımsallık Özelliği
+ + v v _ _ Lineer Olmayan Direnç Bazı Özel Lineer Olmayan Dirençler
GrafTeorisine İlişkin Bazı Tanımlar
Tanım: ( Temel Çevreler Kümesi)
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
Thevenin (1883) ve Norton (1926) Teoremleri
2-Uçlu Direnç Elemanları
Elektrik Devrelerinin Temelleri dersinde ne yapacağız? Amaç: Fiziksel devrelerin elektriksel davranışlarını öngörme akım ve gerilim Hatırlatma Teori oluşturken.
Negatif-Pozitif Geribesleme Devreleri Lineer bölgede v in vdvd ioio +vo+vo v in ioio +vo+vo +-+- vdvd.
Lineer Direnç Devreleri Lineer, zamanla değişmeyen direnç elemanları Bağımsız kaynaklar Amaç: Özel bir grup direnç elemanlarından oluşmuş devrelerin çözümü.
Devre ve Sistem Analizi
3. Kirchhoff’un Akım Yasası (KAY)
Eleman Tanım Bağıntıları
Devre ve Sistem Analizi
Devre Fonksiyonu: Özellik: Herhangibir devre fonksiyonunun genliği w’nın çift fonksiyonudur, fazı da her zaman w’nın tek fonksiyonudur. Tanıt: ve Lemma’dan.
Devre Denklemleri KAY: KGY: ETB:.
Temel kanunlardan bizi ilgilendirenler şunlardır:
Eleman Tanım Bağıntıları
Genelleştirilmiş Çevre Akımları Yöntemi
İşlemsel Kuvvetlendirici
Eleman Tanım Bağıntıları
npn Bipolar Tranzistör Alçak Frekanslardaki Eşdeğeri
Genelleştirilmiş Çevre Akımları Yöntemi
Seri ve Paralel 2-uçlu Direnç Elemanlarının Oluşturduğu 1-Kapılılar
Hatırlatma: Kompleks Sayılar
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
+ + v v _ _ Hatırlatma Lineer Olmayan Direnç
+ - i6 =2i i ik1 =cos2t Vk2 =sin(3t+15) R1 C6 ik1 Vk2 R1 = R1 = 1 ohm
Çok-Uçlu Direnç Elemanları
Hatırlatma * ** ***.
Teorem 2: Lineer zamanla değişmeyen sistemi
G grafının aşağıdaki özellikleri sağlayan Ga alt grafına çevre denir:
Lineer olmayan 2-kapılı Direnç Elemanları
_ _ _ DC Çalışma Noktası Çözüm i tek çözüm çok çözüm + çözüm yok N Is
SSH’de Güç ve Enerji Kavramları
Banach Sabit Nokta Teoremi (Büzülme Teoremi)
Lemma 1: Tanıt: 1.
Teorem: (Tellegen Teoremi) ne elemanlı bir G grafında KAY’sını
Bir ağaç seçip temel kesitlemeleri belirleyelim Hatırlatma
Matrise dikkatle bakın !!!!
Thevenin (1883) ve Norton (1926) Teoremleri
Teorem: (Tellegen Teoremi) ne elemanlı bir G grafında KAY’sını
NET 105 DOĞRU AKIM DEVRE ANALİZİ Öğr. Gör. Taner DİNDAR
ELEKTRİK DEVRE TEMELLERİ
ELEKTRİK DEVRE TEMELLERİ
ELEKTRİK DEVRE TEMELLERİ
İşlemsel Kuvvetlendirici
NİŞANTAŞI ÜNİVERSİTESİ
ELEKTRİK DEVRE TEMELLERİ
Sunum transkripti:

Genelleştirilmiş Çevre Akımları Yöntemi Hatırlatma Tüm eleman akımları Çevre akımları Bu denklem ne söylüyor? Tüm eleman gerilimleri Özel Durum: lineer, zamanla değişmeyen iki uçlu direnç elemanları ve bağımsız gerilim kaynaklarının bulunduğu devreler. Yararlanılacaklar: KAY KGY ETB

Birinci grup elemanlar Yöntem: 1. Adım: Hatırlatma göz için KGY’ını yaz 2. Adım: eleman tanım bağıntılarını yerleştir 3. Adım: eleman akımlarını çevre akımları cinsinden yaz 4. Adım: çevre akımlarını bul Genel Durum: lineer, zamanla değişmeyen iki uçlu direnç elemanları bağımsız gerilim kaynakları lineer, zamanla değişmeyen çok uçlu direnç elemanları bağımsız akım kaynakları Genel Durum: lineer, zamanla değişmeyen akım kontrollü direnç elemanları bağımsız gerilim kaynakları lineer, zamanla değişmeyen akım kontrollü olmayan direnç elemanları bağımsız akım kaynakları Birinci grup elemanlar İkinci grup elemanlar

2. Adım: 1. grup elemanların eleman tanım bağıntılarını yerleştir, Hatırlatma Yöntem: 1. Adım: göz için KGYı’nı yaz 2. Adım: 1. grup elemanların eleman tanım bağıntılarını yerleştir, 2. grup elemanların eleman tanım bağıntılarını yaz. 3. Adım: eleman akımlarını çevre akımları cinsinden yaz 4. Adım: çevre akımlarını ve ikinci grup elemanların gerilimlerini bul

Toplamsallık ve Çarpımsallık Özelliği Grup bağımsız kaynaklar Teorem: (Toplamsallık) 2. Grup bağımsız kaynaklar Lineer direnç elemanları+Bağımsız kaynaklar 1. Grup bağımsız kaynaklar devrede, 2. grup bağımsız kaynaklar devre dışı iken devre çözülsün 2. Grup bağımsız kaynaklar devrede, 1. grup bağımsız kaynaklar devre dışı iken devre çözülsün Devrede tüm bağımsız kaynaklar varken ki çözüm Tanıt: Devrede ki tüm bağımsız kaynakları

Grup bağımsız kaynaklar devrede

Thevenin (1883) ve Norton (1926) Teoremleri Teorem: (Çarpımsallık) Lineer direnç elemanları+Bağımsız kaynaklar var iken devre çözülsün Lineer direnç elemanları+Bağımsız kaynakların değeri k katına çıkarılsın ve devre çözülsün Thevenin (1883) ve Norton (1926) Teoremleri Amaç: Lineer, zamanla değişmeyen çok uçlu, iki uçlu dirençlerden ve bağımsız akım ve gerilim kaynaklarından oluşmuş bir N 1-kapılısının basit bir eşdeğerini elde etmek. Thevenin Eşdeğeri: + _ v i RTH VTH + _ v i N 1-Kapılısı

_ _ _ RTH Thevenin eşdeğer direnci + v i RTH VTH Devredeki tüm bağımsız kaynaklar devre dışı iken 1-1’ uçlarından görülen eşdeğer direnç VTH Açık devre gerilimi 1-1’ uçları açık devre iken 1-1’ uçları arasındaki gerilim Thevenin Teorem: N 1-kapılısının uçlarına i değerinde bir akım kaynağı bağlandığında tüm i değerleri için tek çözümü varsa ( tek v değeri belirlenebiliyorsa) Thevenin eşdeğeri vardır. Norton Eşdeğeri: + _ v i GN iN + _ v i N 1-Kapılısı

_ + v i GN iN GN Norton eşdeğer iletkenliği Devredeki tüm bağımsız kaynaklar devre dışı iken 1-1’ uçlarından görülen eşdeğer iletkenlik iN Kısa devre akımı 1-1’ uçları kısa devre iken 1-1’ uçlarındaki akım Norton Teorem: N 1-kapılısının uçlarına v değerinde bir gerilim kaynağı bağlandığında tüm v değerleri için tek çözümü varsa ( tek i değeri belirlenebiliyorsa) Norton eşdeğeri vardır. Thevenin Eşdeğeri: N kapılısı akım kontrollü değilse Thevenin eşdeğeri yok Norton Eşdeğeri: N kapılısı gerilim kontrollü değilse Norton eşdeğeri yok Norton eşdeğeri yok Thevenin eşdeğeri yok

Sonuç: Lineer, zamanla değişmeyen direnç ve bağımsız kaynaklardan oluşmuş N 1-kapılısı akım kontrollu ise bağlı bulunduğu devrenin çözümünü etkilemiyecek şekilde Thevenin eşdeğeri ile ifade edilir. Lineer, zamanla değişmeyen direnç ve bağımsız kaynaklardan oluşmuş N 1-kapılısı gerilim kontrollu ise bağlı bulunduğu devrenin çözümünü etkilemiyecek şekilde Norton eşdeğeri ile ifade edilir.

Eleman Tanım Bağıntıları v i q Ø direnç Kapasite endüktans memristor Direnç Elemanı: v ve i arasında cebrik bağıntı ile temsil edilen eleman Endüktans Elemanı: Ø ve i arasında cebrik bağıntı ile temsil edilen eleman Kapasite Elemanı: v ve q arasında cebrik bağıntı ile temsil edilen eleman Memristor Elemanı: Ø ve q arasında cebrik bağıntı ile temsil edilen eleman