İSTATİSTİK II Örnekleme Dağılışları & Tahminleyicilerin Özellikleri
İstatistiksel Yöntemler
Yorumlayıcı İstatistikler 1. İçeriği: Tahminleme Hipotez Testleri 2. Amaç Anakütlenin karakteristiği hakkında yorumlamalar (genellemeler) yapmak. Anakütle?
Yorumlama Süreci
Yorumlama Süreci Anakütle
Yorumlama Süreci Anakütle Örnek
Yorumlama Süreci Anakütle Örnek istatistiği (X) Örnek
Yorumlama Süreci Tahminler & testler Anakütle Örnek istatistiği (X)
Tahminleyiciler 1. Bir anakütle parametresini tahminlemek için kullanılan şans değişkenleridir. Örnek ortalaması, örnek oranı, örnek standart sapması 2. Örnek: Örnek ortalamasıX , anakütle ortalaması ’nün bir tahminleyicisidir. EğerX = 3 ise; 3, ’nün tahminidir.
Tanım Ortalamanın Örnekleme Dağılışı Her biri n hacimli örneklerin örnek ortalamalarının olasılık dağılışıdır. page 256 of text
Örnekleme Dağılışı 1. Teorik olasılık dağılışı. 2. Şans değişkeni Örnek İstatistiğidir. Örnek ortalaması, örnek oranı vs. 3. Sabit bir hacimli tüm olası örneklerin alındığını varsayalım. 4. Tüm olası [X, P(X) ] ikilileri Ortalamanın Örnekleme Dağılışı
Örnek Bir anakütle varsayalım. ... Anakütle hacmi, N = 4 Şans değişkeni, X, kişilerin bir işteki hata sayısı olsun. x’in değerleri: 1, 2, 3, 4 Her değerin olasılığı eşit olsun. İki kişilik örnekler ile gerçek ortalama m’yü tahmin edelim. © 1984-1994 T/Maker Co.
Anakütle Karakteristikleri Anakütle dağılışı Have students verify these numbers.
n = 2 hacimli tüm olası örnekler Yerine koyularak örnekleme
n = 2 hacimli tüm olası örnekler 16 Örnek Ortalaması Yerine koyularak örnekleme
Tüm Örnek Ortalamalarının Örnekleme Dağılışı 16 Örneğin Ortalaması Örnekleme Dağılışı
Karşılaştırma Anakütle Örnekleme Dağılışı
Ortalamanın Standart Hatası 1. Tüm olası örnek ortalamaları X’ların standart sapması 2. Anakütle standart sapmasından küçüktür.
Ortalamanın Standart Hatası 1. Tüm olası örnek ortalamaları X’ların standart sapması 2. Anakütle standart sapmasından küçüktür. 3. Formülü (İadeli Örnekleme)
X-bar’ın Beklenen Değeri “Hatırlatma” E(X+Y) = E(X) + E(Y) Buradan
X-bar’ın Varyansı “Hatırlatma” Bağımsız X ve Y için Buradan Var(X + Y) = Var(X) + Var (Y) Buradan “Hatırlatma”
Tahminleyicilerin Özellikleri - 1. Sapmasızlık 2. Minimum Varyans (Etkinlik) - Örnek ortalaması bu iki özelliği de sağlamaktadır. 9
Sapmasız ve Sapmalı Tahminleyiciler Sapmasız tahminleyici Sapmalı tahminleyici { Sapma
Etkinlik Etkin tahminleyici Etkin olmayan tahminleyici
Ortalamanın Örnekleme Dağılışının Özellikleri 1. Sapmasızlık (Yansızlık) Örnekleme dağılışının beklenen değeri gerçek ortalamaya eşittir. 2. Etkinlik (minimum varyans) Örnek ortalamasının varyansı diğer bir sapmasız tahminleyicinin varyansından küçüktür. An estimator is a random variable used to estimate a population parameter (characteristic). Unbiasedness An estimator is unbiased if the mean of its sampling distribution is equal to the population parameter. Efficiency The efficiency of an unbiased estimator is measured by the variance of its sampling distribution. If two estimators, with the same sample size, are both unbiased, then the one with the smaller variance has greater relative efficiency. Consistency An estimator is a consistent estimator of a population parameter if the larger the sample size, the more likely it is that the estimate will come close to the parameter.
Sapmasızlık Sapmasız Sapmalı
Ortalamanınörnekleme dağılışı Medyanın örnekleme dağılışı Etkinlik Ortalamanınörnekleme dağılışı Medyanın örnekleme dağılışı
Örnek Hacmi büyüdükçe tahminleyicinin varyansı küçülür. Büyük örnek hacimli durum Küçük örnek hacimli durum
Normal dağılış gösteren bir anakütleden örnekleme Merkezi eğilim Yayılma Yerine konularak örnekleme Anakütle dağılışı Örnekleme dağılışı n = 4 X = 5 n =16 X = 2.5
Örnek Telekom’da çalışan bir uzman, uzun zaman yaptığı gözlemlerden, telefon konuşma sürelerinin = 8 dk. & = 2 dk. olan normal dağılış gösterdiğini belirlemiştir. 25 görüşme rasgele seçilirse, örnek ortalamasının 7.8 & 8.2 dakika arasında çıkması olasılığı nedir? © 1984-1994 T/Maker Co.
Standart Normal Dağılış Çözüm Örnekleme dağılışı Standart Normal Dağılış .3830 .1915 .1915
Normal olmayan dağılışlardan örnekleme Merkezi eğilim Yayılma Yerine koyarak örnekleme Anakütle dağılışı Örnekleme dağılışı n = 4 X = 5 n =30 X = 1.8
Merkezi limit teoremi Örnek hacmi yeterince büyükse (n 30) ...
Merkezi limit teoremi Örnekleme dağılışı hemen hemen normal olur. Örnek hacmi yeterince büyükse (n 30) ... Örnekleme dağılışı hemen hemen normal olur.
Merkezi limit teoremi Örnekleme dağılışı hemen hemen normal olur. Örnek hacmi yeterince büyükse (n 30) ... Örnekleme dağılışı hemen hemen normal olur.
Merkezi limit teoremi 1. x şans değişkeninin, ortalaması µ ve standart sapması olan bir dağılışı olsun. 2. n hacimli örnekler şans örneği olsun. page 257 of text
Merkezi limit teoremi Örnek ortalaması x ‘ın dağılışı, örnek hacmi arttıkça bir normal dağılışa yaklaşır. Örnek ortalamalarının ortalaması, anakütle ortalaması µ’ye eşit olur. Örnek ortalamalarının standart sapması s/ olur.
Örnek: Kadınlardan oluşan bir anakütlede ortalama ağırlık 143 lb ve standart sapma 29 lb’dir. Eğer 36 değişik kadın rasgele seçilirse, bunların ortalamasının 150 lb’den büyük olması olasılığı nedir? The (b) problem exemplifies one that uses the central limit theorem to compute. Note the different wording to that of the (a) problem.
Örnek: Kadınlardan oluşan bir anakütlede ortalama ağırlık 143 lb ve standart sapma 29 lb’dir. Eğer 36 değişik kadın rasgele seçilirse, bunların ortalamasının 150 lb’den büyük olması olasılığı nedir? The different standard deviation will have to be computed for this distribution. Note that the standard deviation is smaller than that of the population. x = 143 150 x= 29 = 4.83333 36
Örnek: Kadınlardan oluşan bir anakütlede ortalama ağırlık 143 lb ve standart sapma 29 lb’dir. Eğer 36 değişik kadın rasgele seçilirse, bunların ortalamasının 150 lb’den büyük olması olasılığı nedir? z = 150-143 = 1.45 29 36 With a different standard deviation, there will be a different z score computation. 0.4265 x = 143 150 x= 4.83333 1.45
Örnek: Kadınlardan oluşan bir anakütlede ortalama ağırlık 143 lb ve standart sapma 29 lb’dir. Eğer 36 değişik kadın rasgele seçilirse, bunların ortalamasının 150 lb’den büyük olması olasılığı 0.0735 dir. P(x> 150) = 0.0735 z = 150-143 = 1.45 29 36 0.5 - 0.4265 = 0.0735 Interpretation of numerical answer. 0.4265 x = 143 150 x= 4.83333 1.45
Yerine koymadan örnekleme n > 0.05 N ise N - n x = n N - 1 Sonlu anakütle Düzeltme faktörü
ÖRNEK 3: Örnek 2 verileri için aritmetik ortalama ve örnek medyanının tahminleyici özelliklerini araştırınız.
ÖRNEK 3:
ÖRNEK 3:
ÖRNEK 3:
ÖRNEK 3:
ÖRNEK 3:
ÖRNEK 3:
ÖRNEK 3
ÖRNEK 3
ÖRNEK 3
DAĞILIMIN TİPİ Merkezi limit teoremine göre örnek oranının dağılımı eğer n örnek hacmi yeterince büyük ise yaklaşık olarak normal dağılıma sahiptir. Bunun temel sebebi örnek oranının, n adet denemede ortaya çıkan ortalama başarı sayısını temsil etmesidir. Normal dağılımın parametreleri: Anakütle ortalaması Anakütle varyansı
Dağılımın Parametreleri: Örnek Oranı için Anakütle Ortalaması
Dağılımın Parametreleri: Örnek oranı için Anakütle Varyansı
Örnek Oranının Standartlaştırılması
ÖRNEK 5
ÖRNEK 5
ÖRNEK 5