Hopfield Ağı Ayrık zamanSürekli zaman Denge noktasının kararlılığı Lyapunov Anlamında kararlılık Lineer olmayan sistemin kararlılığı Tam Kararlılık Dinamik.

Slides:



Advertisements
Benzer bir sunumlar
Dinamik sistemin kararlılığını incelemenin kolay bir yolu var mı? niye böyle bir soru sorduk? Teorem 1: (ayrık zaman sisteminin sabit noktasının kararlılığı.
Advertisements

Çıkış katmanındaki j. nöron ile gizli katmandaki i. nörona ilişkin ağırlığın güncellenmesi Ağırlığın güncellenmesi Hangi yöntem? “en dik iniş “ (steepest.
Hat Dengeleme.
Hatırlatma Ortogonal bazlar, ortogonal matrisler ve Gram-Schmidt yöntemi ile ortogonaleştirme vektörleri aşağıdaki özeliği sağlıyorsa ortonormaldir: ortogonallik.
Özdeğerler ve özvektörler
Determinant Bir kare matrisin tersinir olup olmadığına dair bilgi veriyor n- boyutlu uzayda matrisin satırlarından oluşmuş bir paralel kenarın hacmine.
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Devre ve Sistem Analizi
Verilen eğitim kümesi için, ortalama karesel hata ‘yı öğrenme performansının ölçütü olarak al ve bu amaç ölçütünü enazlayan parametreleri belirle. EK BİLGİ.
Bir örnek : Sarkaç. Gradyen Sistemler E(x)’in zamana göre türevi çözümler boyunca Gradyen sistemlere ilişkin özellikler Teorem 6: (Hirsh-Smale-Devaney,
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Metrik koşullarını sağlıyor mu?
A1 sistemi A2 sistemi Hangisi daha hızlı sıfıra yaklaşıyor ? Hatırlatma.
BİLGİSAYAR PROGRAMLAMA Ders 11: İşaretçi (Pointer) Kullanımı Yrd. Doç. Dr. Altan MESUT Trakya Üniversitesi Bilgisayar Mühendisliği.
Ders Hakkında 1 Yarıyıl içi sınavı 16 Nisan 2013 % 22 3 Kısa sınav 12 Mart 9 Nisan 14 Mayıs % 21 1 Ödev % 7 Yarıyıl Sonu Sınavı % 50.
Kararlılık Sıfır giriş kararlılığı Tanım: (Denge noktası) sisteminin sabit çözümleri, sistemin denge noktalarıdır. nasıl belirlenir? Cebrik denkleminin.
Bu durumda lineer sistemin çözümleri neler olabilir? Tüm bu durum portrelerinde ortak bir şey var, ne? S. Haykin, “Neural Networks- A Comprehensive Foundation”2.
AKIL (ZİHİN) HARİTASI.
Arş.Gör.İrfan DOĞAN.  Bugün otizm tedavisinde en önemli yaklaşım, özel eğitim ve davranış tedavileridir.  Tedavi planı kişiden kişiye değişmektedir,
Momentum Terimi Momentum terimi Bu ifade neyi anımsatıyor? Lineer zamanla değişmeyen ayrık zaman sistemi HATIRLATMA.
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
Kaos’a varmanın yolları DüzenKaos Nasıl? Umulmadık yapısal değişiklikler ile Bu nasıl oluşabilir? Ardışıl bir dizi dallanma ile, peryod katlanmasına yol.
İSTANBUL TEKNİK ÜNİVERSİTESİ ♦ ELEKTRONİK & HABERLEŞME MÜHENDİSLİĞİ x1x1 x2x2 xmxm 1 w1w1 w2w2 wmwm w m+1 v y Hatırlatma.
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Özkan Karabacak oda no:2307 tel.
Program Tasarım Modelleri
Çok Katmanlı Algılayıcı-ÇKA (Multi-Layer Perceptron)
Hatırlatma: Olasılık Tanım (Şartlı olasılık): A olayı olduğunda B olayının olma olasılığı Bir örnek: çalışan işsiz Toplam Erkek Kadın
HİPOTEZ TESTLERİNE GİRİŞ Şu ana kadar örneklemden elde edilmiş istatistiklerden yararlanarak, kitle parametresini kestirebilmek için nokta tahmini.
Hata Fonksiyonları Lojistik Fonksiyon ß ß Huber Fonksiyonu ß ß.
Ayrık Zaman Hopfield Ağı ile Çağrışımlı Bellek Tasarımı Kullanılan Hücre Modeli: McCulloch-Pitts Eksik birşey var!! Örüntüler: 1. Aşama: Belleğin Oluşturulması.
ÖZEL TANIMLI FONKSİYONLAR
f:(a,b)==>R fonksiyonu i)  x 1,x 2  (a,b) ve x 1  x 2 içi f(x 1 )  f(x 2 ) ise f fonksiyonu (a,b) aralığında artandır. y a x 1 ==>x 2 b.
YÖNLENDİRME. Yönlendirme ● Statik ● Dinamik ● Kaynakta yönlendirme ● Hop by hop yönlendirme.
Devre ve Sistem Analizi
Ders notlarına nasıl ulaşabilirim
x* denge noktası olmak üzere x* sabit nokta olmak üzere
Eleman Tanım Bağıntıları
DENEYSEL YAKLAŞIM (Kullanıcı Testleri)
Ayrık Zaman Hopfield Ağı ile Çağrışımlı Bellek Tasarımı
Hatırlatma: Durum Denklemleri
Sistem Özellikleri: Yönetilebilirlik, Gözlenebilirlik
Geçen hafta ne yapmıştık
İlk olarak geçen hafta farklı a değerleri için incelediğiniz lineer sisteme bakalım: MATLAB ile elde ettiğiniz sonuçları analitik ifade ile elde edilen.
Bazı sorular: Topolojik eşdeğerlilik ne işimize yarayacak, topolojik
Teorem 2: Lineer zamanla değişmeyen sistemi
Yapay Sinir Ağı Modeli (öğretmenli öğrenme) Çok Katmanlı Algılayıcı
Bu teorem sayesinde öteleme dönüşümü için söylenenleri
Sinir Hücresi McCulloch-Pitts x1 w1 x2 w2 v y wm xm wm+1 1 '
aynı cisim üzerinde tanımlanmış bir vektör uzayıdır.
Hopfield Ağı Ayrık zaman Sürekli zaman
Spektral Teori ters dönüşümler bunların genel özellikleri ve asıl
Lineer olmayan dinamik bir sistemin davranışını
X=(X,d) metrik uzayında bazı özel alt kümeler
TANIMLAYICI İSTATİSTİKLER
YAPI STATİĞİ II Düğüm Noktaları Hareketli Sistemlerde Açı Yöntemi
Çizge Teorisi ve Algoritmaları
Program Tasarım Modelleri
“Bilgi”’nin Gösterimi “Bilgi” İnsan veya Makina Yorumlama Öngörme
Diferansiyel denklem takımı
Düğüm-Eyer Dallanması
Eğiticisiz Öğrenme Hatırlatma
MİMARLIK BÖLÜMÜ STATİK DERSİ
DÜŞÜNME.
SONLU ELEMANLAR DERS 5.
Meriç ÇETİN Pamukkale Üniversitesi Bilgisayar Mühendisliği Bölümü
Çizge Teorisi ve Algoritmalari
NİŞANTAŞI ÜNİVERSİTESİ
6.HAFTA: ARAŞTIRMALARDA ÖLÇME VE ÖLÇEKLERDE GÜVENİLİRLİK
İleri Algoritma Analizi
RASTGELE DEĞİŞKENLER Herhangi bir özellik bakımından birimlerin almış oldukları farklı değerlere değişken denir. Rastgele değişken ise tanım aralığında.
Sunum transkripti:

Hopfield Ağı Ayrık zamanSürekli zaman Denge noktasının kararlılığı Lyapunov Anlamında kararlılık Lineer olmayan sistemin kararlılığı Tam Kararlılık Dinamik sistemin kalıcı çözümünü incelemek için öncelikle denge noktalarının kararlılığına bakacağız Hatırlatma

Soru: Sürekli zaman sistemi için denge noktalarını nasıl buluruz? Soru: Ayrık zaman sistemi için denge noktalarını nasıl buluruz? Sürekli Zaman Hopfield Ağının Kararlılık Analizi Lyapunov’un 2. yöntemi Tanım: Lyapunov Fonksiyonu Lyapunov Fonksiyonudur Teorem: Lyapunov Fonksiyonu olmak üzere, denge noktasının kararlı olması için yeter koşul için olmasıdır. Hatırlatma

Enerji Fonksiyonunu Lyapunov Fonksiyonu olarak seçebilir miyiz? Sizce koşulları sağlıyor mu? Dikkat!!! Türevine de bakalım..... Buradaki büyüklükler nasıl değerler alıyor? Ancak türev çözümler boyunca olan türev

Monoton artan fonksiyon Tam kararlı, neden?

Dinamik Sistem: Ayrık zaman modeli, her anda değişen durum sayısına bağlı olarak farklı şekillerde ele alınır: senkron parallel asenkron seri Dinamik sistemin çalışması bu yapıdadır. Ayrık Zaman Hopfield Ağının Kararlılık Analizi

Sürekli zamanda enerji fonksiyonunun çözümler boyunca olan türevine bakmıştık, şimdi ayrık zamandayız türev yerine ne ele alınacak? Asenkron Çalışma: n bileşenden sadece biri değişiyor. Bu durumda ‘nın nasıl değiştiğine dikkat edelim

Asenkron çalışan ayrık Hopfield’de tam kararlı

Hopfield ağını kullanacağımız uygulamalar Amaç: 1) Durum uzayındaki dinamik davranışı sonlu sayıdaki kararlı denge noktası ile belirlenen fiziksel sistem, çağrışımlı bellek olarak tasarlanabilir. 2) Aynı sistem, bir optimizasyon problemine ilişkin amaç ölçütünü azlayacak şekilde tasarlanabilir. Yapılan: 1) Bellekde saklanacak örüntüler dinamik sistemin kararlı denge noktalarına karşılık düşecek şekilde tam kararlı dinamik sistem tasarlanıyor. 2) Kısıtlı optimizasyon problemi Lagrange çarpanları yöntemi ile kısıtsız optimizasyon problemine dönüştürülür: Optimizasyon probleminin amaç ölçütü, Hopfield ağına ilişkin “Enerji Fonksiyonuna” denk alınır Hopfield ağına ilişkin parametreler, belirlenerek dinamik sistem tasarlanır.

Ayrık Zaman Hopfield Ağı ile Çağrışımlı Bellek Tasarımı Kullanılan Hücre Modeli: McCulloch-Pitts Eksik birşey var!! Örüntüler: 1. Aşama: Belleğin Oluşturulması n boyutlu, p tane veriden yararlanarak belleği oluşturmak için ağırlıklar belirlenmeli Her nöronun çıkışı diğer nöronların girişine bağlı kendisine geribesleme yok ağırlık matrisi simetrik

Ağırlıklar önceden hesaplanabilir veya ile belirlenebilir. 2. Aşama: Anımsama Dinamik yapı: Verilen bir ilk koşul için durumlar dinamik yapı gereği senkron veya asenkron yenilenir Neye karşılık düşüyor? Tüm nöronlar için olduğunda bellekte saklanan örüntülerden birine karşılık düşen bir kararlı düğüm noktasına erişilir. Örnek:

Bazı Sorular Gerçekten de belirlenen ağırlıklar ile istenilen kararlı denge noktalarına erişmemizi sağlayacak dinamik sistem yaratıldı mı? Eğer evet ise, bir bozulmuş veya eksik örüntü ile başlayarak bu örüntünün bellekteki aslına erişilebilinir mi? Herhangi bir ilk ilk koşul ile başlanıldığında ağa ilişkin dinamik hangi kararlı durum çözümünü verecek ? Küçük hata ile kaç örüntü belleğe yerleştirilebilinir?

Hopfield Ağı yakınsıyor, ama nereye? Ağırlıkları yerleştirelim: n büyük ise p > 0.38n ise bellek anlamsızlaşıyor

Sürekli Zaman Hopfield Ağı ile Çağrışımlı Bellek Tasarımı Ayrık zaman Hopfield ağındaki gibi ağırlıklar belirlenir ve diferansiyel Denklem takımı çözülür.