Dinamik sistemin kararlılığını incelemenin kolay bir yolu var mı? niye böyle bir soru sorduk? Teorem 1: (ayrık zaman sisteminin sabit noktasının kararlılığı.

Slides:



Advertisements
Benzer bir sunumlar
Hâsılat kavramları Firmaların kârı maksimize ettikleri varsayılır. Kâr toplam hâsılat ile toplam maliyet arasındaki farktır. Kârı analiz etmek için hâsılat.
Advertisements

Geçen hafta anlatılanlar Değişmez küme Değişmez kümelerin kararlılığı Bildiğimiz diğer kararlılık tanımları ve değişmez kümenin kararlılığı ile ilgileri.
Sinir Hücresi Nasıl Fark Edilmiş? eCell.jpg/512px-PurkinjeCell.jpg Ramon y Cajal ( )
Çıkış katmanındaki j. nöron ile gizli katmandaki i. nörona ilişkin ağırlığın güncellenmesi Ağırlığın güncellenmesi Hangi yöntem? “en dik iniş “ (steepest.
Hatırlatma Ortogonal bazlar, ortogonal matrisler ve Gram-Schmidt yöntemi ile ortogonaleştirme vektörleri aşağıdaki özeliği sağlıyorsa ortonormaldir: ortogonallik.
Özdeğerler ve özvektörler
Determinant Bir kare matrisin tersinir olup olmadığına dair bilgi veriyor n- boyutlu uzayda matrisin satırlarından oluşmuş bir paralel kenarın hacmine.
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Devre ve Sistem Analizi
Verilen eğitim kümesi için, ortalama karesel hata ‘yı öğrenme performansının ölçütü olarak al ve bu amaç ölçütünü enazlayan parametreleri belirle. EK BİLGİ.
Bir örnek : Sarkaç. Gradyen Sistemler E(x)’in zamana göre türevi çözümler boyunca Gradyen sistemlere ilişkin özellikler Teorem 6: (Hirsh-Smale-Devaney,
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Metrik koşullarını sağlıyor mu?
A1 sistemi A2 sistemi Hangisi daha hızlı sıfıra yaklaşıyor ? Hatırlatma.
Graf Teorisi Pregel Nehri
Ders Hakkında 1 Yarıyıl içi sınavı 16 Nisan 2013 % 22 3 Kısa sınav 12 Mart 9 Nisan 14 Mayıs % 21 1 Ödev % 7 Yarıyıl Sonu Sınavı % 50.
Kararlılık Sıfır giriş kararlılığı Tanım: (Denge noktası) sisteminin sabit çözümleri, sistemin denge noktalarıdır. nasıl belirlenir? Cebrik denkleminin.
Hopfield Ağı Ayrık zamanSürekli zaman Denge noktasının kararlılığı Lyapunov Anlamında kararlılık Lineer olmayan sistemin kararlılığı Tam Kararlılık Dinamik.
Bu durumda lineer sistemin çözümleri neler olabilir? Tüm bu durum portrelerinde ortak bir şey var, ne? S. Haykin, “Neural Networks- A Comprehensive Foundation”2.
MATEMATİK DÖNEM ÖDEVİ.
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
Kaos’a varmanın yolları DüzenKaos Nasıl? Umulmadık yapısal değişiklikler ile Bu nasıl oluşabilir? Ardışıl bir dizi dallanma ile, peryod katlanmasına yol.
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Özkan Karabacak oda no:2307 tel.
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Hatırlatma: Olasılık Tanım (Şartlı olasılık): A olayı olduğunda B olayının olma olasılığı Bir örnek: çalışan işsiz Toplam Erkek Kadın
Düğüm-Eyer dallanması için ele alınan ön-örneğe yüksek mertebeden terimler eklense davranışı yapısal olarak değişir mi? Bu soru neden önemli Lemma sistemi.
ÖZEL TANIMLI FONKSİYONLAR
f:(a,b)==>R fonksiyonu i)  x 1,x 2  (a,b) ve x 1  x 2 içi f(x 1 )  f(x 2 ) ise f fonksiyonu (a,b) aralığında artandır. y a x 1 ==>x 2 b.
Devre ve Sistem Analizi
Ders notlarına nasıl ulaşabilirim
x* denge noktası olmak üzere x* sabit nokta olmak üzere
Elektrik Mühendisliğinde Matematiksel Yöntemler
Dinamik Sistem Dinamik sistem: (T, X, φt ) φt : X X a1) φ0=I
h homeomorfizm h homeomorfizm h 1-e-1 ve üstüne h sürekli h
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
Hatırlatma: Durum Denklemleri
Dinamik Sistem T=R sürekli zaman Dinamik sistem: (T, X, φt ) T zaman
Sistem Özellikleri: Yönetilebilirlik, Gözlenebilirlik
Elektrik Mühendisliğinde Matematiksel Yöntemler
İlk olarak geçen hafta farklı a değerleri için incelediğiniz lineer sisteme bakalım: MATLAB ile elde ettiğiniz sonuçları analitik ifade ile elde edilen.
Bazı sorular: Topolojik eşdeğerlilik ne işimize yarayacak, topolojik
Teorem 2: Lineer zamanla değişmeyen sistemi
Bazı sorular: Topolojik eşdeğerlilik ne işimize yarayacak, topolojik
Bu teorem sayesinde öteleme dönüşümü için söylenenleri
Geçen haftaki tanımlar:
aynı cisim üzerinde tanımlanmış bir vektör uzayıdır.
Spektral Teori ters dönüşümler bunların genel özellikleri ve asıl
Lineer olmayan dinamik bir sistemin davranışını
MAT – 101 Temel Matematik Mustafa Sezer PEHLİVAN *
Hatırlatma Yörünge: Or(xo)
X=(X,d) metrik uzayında bazı özel alt kümeler
KAY ve KGY toplu parametreli devrelerde geçerli
YÖNETİM- ÖRGÜT TEORİLERİ MODERN EKOL- SİSTEM TEORİSİ
İleri Algoritma Analizi
Lemma 1: Tanıt: 1.
“Bilgi”’nin Gösterimi “Bilgi” İnsan veya Makina Yorumlama Öngörme
Diferansiyel denklem takımı
Yrd. Doç. Dr. Mustafa Akkol
Düğüm-Eyer Dallanması
KÜMELER HAZIRLAYAN : SELİM ACAR
Bazı Doğrusal Olmayan Sistemler
SİSMİK PROSPEKSİYON DERS-3
ELE 574: RASTGELE SÜREÇLER
MEZUNİYET TEZİ POSTER ÖRNEĞİ
MBT-303 özel öğretim yöntemleri-ı
İKİNCİ DERECEDEN DENKLEMLER
NİŞANTAŞI ÜNİVERSİTESİ
D(s): Kapalı sistemin paydası H(s)  N(s)
MEZUNİYET TEZİ POSTER ÖRNEĞİ
Sunum transkripti:

Dinamik sistemin kararlılığını incelemenin kolay bir yolu var mı? niye böyle bir soru sorduk? Teorem 1: (ayrık zaman sisteminin sabit noktasının kararlılığı için yeter koşul) kararlıdır Hatırlatma

Bir örnek: Henon Dönüşümü Hatırlatma

Denge noktaları kararlı mı?

Teorem 2: (Ayrık zaman sisteminin sabit noktasının varlığı ve kararlılığı için yeter koşul) tam metrik uzay bu metrik uzayda tanımlanmış bir metrik Ayrık zaman dinamik sisteminin bir sabit noktası vardır Teorem 1’den farklı ne söylemekte?

Sürekli zaman dinamik sistemlerinin kararlılığını nasıl inceleyeceğiz? Öncelikle, çözümün varlığından tekliğinden ve ilk koşullara sürekli bağımlılığından emin olmalıyız Teorem 3: (Sürekli zaman dinamik sisteminin çözümünün varlığı, tekliği ve ilk koşullara sürekli bağlılığı için yeter koşul ) ‘de açık bölge için aşağıdaki koşulları sağlayan tek bir vardır. ‘da başlayan çözüm

çözümü her için neleri belirliyor? çözüm yörünge ilerleme işlemiPeki, ayrık zamanda ne oluyordu? Artık çözümlerin varlığı ve tekliğini biliyoruz, yeniden kararlı değişmez kümelere bakalım Ayrık zaman için yazılan Teorem 1 gibi bir teorem sürekli zaman için de var mı? Teorem 4: (Lyapunov ) kararlıdır trajectory orbit

Bir örnek: Lorenz Osilatörü

Teorem 5: (Lyapunov’un ikinci metodu) kararlıdır Lyapunov fonksiyonunu nasıl bulacağız? Simetrik, kesin pozitif Bu teorem benzer şekilde ayrık zaman içinde var

Teorem 5: (Lyapunov’un ikinci metodu) kararlıdır Bu teorem benzer şekilde ayrık zaman içinde var Lyapunov fonksiyonunu nasıl bulacağız? Fiziksel sistemin davranışına ilişkin denklemler Fiziksel sistemde depolanmış enerjiye ilişkin denklemler Sakınımlı sistemler Gradyen sistemler

Hamiltonyan Sistemler LC devresi Sürtünmesiz Sarkaç

Bir örnek : Sarkaç

Gradyen Sistemler E(x)’in zamana göre türevi çözümler boyunca Gradyen sistemlere ilişkin özellikler Teorem 6: (Hirsh-Smale-Devaney, sf. 205) E(x)’in olağan noktası dinamik sistemin denge noktaları ‘in izole minimumu ise asimptotik kararlı denge noktasıdır

Bir örnek daha E(x)’e ilişkin eş düzey eğrileri Durum portresi M.W.Hirsh, S. Smale, R.L. Devaney,”Differential Equations, Dynamical Systems and An Introduction to Chaos”, Elsevier, 2004.

Lineer sistemler için Lyapunov fonksiyonunu Ne olmalı? Teorem 7: (Pozitif Reel Lemma- Khalil sf. 240) pxp boyutlu transfer fonksiyonu matrisi yönetilebilir gözlenebilir olmak üzere aşağıdaki eşitlikleri sağlayan P,L,W matrisleri bulunabiliniyorsa G(s) pozitif reeldir.

Tüm bu teoremler, denge noktası veya sabit noktadan oluşan değişmez kümelerin kararlılığına ilişkin yeter koşulları veriyor. Limit çevrim, veya daha başka çözümler için ne yapılabilinir? Teorem 8: (Poincare-Bendixson) kapalı, sınırlı de ya denge noktası yok ya da Değişmez küme Çevrim

Liénard’ın denklemi f,g є C 1, f,g: R + R g tek, f çift fonksiyon g(x)>0, t Ayrıca orijin civarında kararlı limit çevrim var

özel olarak.... Van der Pol Osilatörü

Dinamik sistemlerin genel, niteliksel özelliklerini belirlemek istiyoruz... Topolojik Eşdeğerlilik: h homeomorfizm Zamanla değişimin yönünü koruyarak ve topolojik eşdeğerdir h homeomorfizm h h 1-e-1 ve üstüne h sürekli h -1 sürekli Hatırlatma

* * ¤ ¤ (*) sistemi ( **) sistemine düzgün “eşdeğer”dir. ¤ ¤ (¤) sistemi ( ¤¤) sistemine “eş”dir Sürekli zaman Ayrık zaman smoothly equivalent conjugate

Topolojik Eşdeğerliliğe ilişkin başka tanımlar da var: yörüngesel eşdeğerlilik, C k eşdeğerlilik yerel eşdeğerlilik..... Denge noktası civarında faz portresinin yapısı nasıl incelenebilir? * ¤ Sürekli zaman Ayrık zaman x * denge noktası olmak üzere x * sabit nokta olmak üzere Özdeğerlerden negatif, sıfır ve pozitif reel kısımlara sahip olanların sayısı sırası ile olsun. Özdeğerlerden birim daire içinde, üstünde ve dışında olanların sayısı sırası ile olsun.

Hiperbolik denge noktası Bir denge noktası (sabit nokta)’na ilişkin ise o denge noktası (sabit nokta) hiperbolik denge noktası olarak adlandırılır. ise, hiperbolik eyer olarak adlandırılır. Y.A. Kuznetsov, “Elements of Applied Bifurcation Theory”, Springer, ‘ın kararlı değişmez kümesi ‘ın kararsız değişmez kümesi Sürekli Zaman

Y.A. Kuznetsov, “Elements of Applied Bifurcation Theory”, Springer, ‘ın kararlı değişmez kümesi ‘ın kararsız değişmez kümesi Ayrık Zaman