Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

Makine Öğrenmesinde Yeni Problemler YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ.

Benzer bir sunumlar


... konulu sunumlar: "Makine Öğrenmesinde Yeni Problemler YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ."— Sunum transkripti:

1 Makine Öğrenmesinde Yeni Problemler YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

2 Aktif Öğrenme (Active Learning) Eğitim örneklerinin etiketlerinin başta belli olmadığı, algoritmanın etiketini istediği örnekleri seçtiği problemlerdir. Amaç: veri etiketleme maliyetini azaltmak Yöntem: Tüm eğitim seti yerine bir kısmını kullanmak. Belirli bir test seti üzerinde; tüm eğitim setini kullanmış olmamıza göre benzer, kabul edilebilir derecede düşük ya da daha yüksek başarı elde etmek YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

3 Aktif Öğrenme Adımlar A: Küçük bir eğitim setiyle (E) başla. (eğitim kümesinin az bir kısmının etiketlerini iste) B: Bir model üret. Bu modele göre etiketsiz eğitim örneklerine (EE) dair tahminlerini üret. C: Bu tahminlere göre bu örneklerden bir kısmını seç (tahmin kesinliğine göre) ve etiketlerini iste. (EE’den çıkar, E’ye ekle) B ve C adımlarını tekrar et YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

4 Aktif Öğrenme Sorular İlk eğitim setinin (E) seçiminin önemi var mı? EE’deki örneklerin sınıflandırma problemlerinde tahmin kesinliği nasıl hesaplanır? Tahmin kesinliği Regresyon problemlerinde nasıl ölçülebilir? Kolektif öğrenme nerede kullanılabilir? YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

5 Yarı Eğiticili Öğrenme (Semisupervised Learning) Modelin oluşturulmasında etiketli verilerin yanında etiketsiz verilerinde kullanıldığı problemlerdir. Temel fikir: Elde hem etiketli hem de etiketsiz veriler var. Belirli bir test seti üzerinde, sadece etiketli verileri kullanmak yerine, etiketsizleri de kullanmak daha olur. YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

6 Yarı Eğiticili Öğrenmede Sorular Etiketsiz örneklerin tahmini sınıfları nasıl hesaplanır? Regresyon problemlerinde nasıl hesaplanır? Kolektif öğrenme nerede kullanılabilir? YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

7 Kısmı Etiketler (Partial labels) Örneklerin birden fazla etiketi var. Sadece 1 i doğru. İçinde birden fazla kişinin olduğu resimler ve kişilerin isimleri var. Hangisi hangisinin ismi belli değil. YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

8 Çok Etiketli Verilerde Öğrenme (Multi-label learning) Bir örneğin birden fazla doğru etiketinin olduğu durumlar. Bir kişi hem baba, hem öğretmen, hem şişman olabilir. YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

9 Kalabalıktan Öğrenme (Learning from crowds) Örneklerin çok sayıda öğretmenin etiketlediği, hangisinin doğru olduğunun bilinmediği durumlar. 100 kişiye elinizdeki verileri etiketletiyorsunuz. Kişilerin genel güvenilirlikleri belli / değil Kişilerin belirli tür örnekler için güvenilirlikleri farklı/ eşit YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

10 Bütçeli Öğrenme (Budgeted learning) Elinde bir bütçe var. Bununla elindeki eğitim kümesinin örneklerini, örneklerin özelliklerini satın alıyorsun. Amaç eldeki bütçe (minimum data) en iyi test performansını elde etmek YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ


"Makine Öğrenmesinde Yeni Problemler YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ." indir ppt

Benzer bir sunumlar


Google Reklamları