Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

JEOTERMAL ENERJİ Rahime AKYÜZ

Benzer bir sunumlar


... konulu sunumlar: "JEOTERMAL ENERJİ Rahime AKYÜZ"— Sunum transkripti:

1 JEOTERMAL ENERJİ 2008010612071 Rahime AKYÜZ
Fahri Yavuz YILMAZ

2 Jeotermal Enerji nedir?
Jeotermal enerji, yerkabuğunun çeşitli derinliklerinde birikmiş ısının oluşturduğu, sıcaklıkları sürekli olarak bölgesel atmosferik ortalama sıcaklığın üzerinde olan ve çevresindeki normal yeraltı ve yerüstü sularına göre daha fazla erimiş mineral, çeşitli tuzlar ve gazlar içerebilen sıcak su ve buhar olarak tanımlanabilir.

3 JEOTERMAL OLUŞUMU Yeryüzündeki bütün volkanik bölgelerde ve hatta volkanik faaliyeti binlerce yıl önce sona ermiş bulunan yerlerde bile, sayısız sıcak su kaynaklarının, fumarollerin bulunması, o yörede yüzeye yakın kayaçların altında ve daha derin yerlerde sıcaklığın var olduğunu gösteren delillerdir. Mağma hazinesi içinde serbest kalan gazların basıncının zayıfladığı ve dolayısıyla volkanik faaliyet sona erdiği zaman, mağma yavaş yavaş soğumaya devam eder. Bu soğuma sırasında büyük ölçüde su buharı olmak üzere, hidroklorik asit, karbondioksit, hidrojen, amonyum klorür v.b. gibi gazlar çıkar. Bütün bu gazlar yeraltı suyu zonu içindeki yarıklardan geçerek yeryüzüne ulaşır. İşte bu volkanik etkinlik sırasında çıkan gazlar tarafından ısıtılan yeraltı suyu ve diğer karışımlar, yeryüzüne sıcak kaynaklar, gayzerler, fumaroller olarak ulaşırlar.

4 JEOTERMAL OLUŞUMU Yeryuvarlığının derinliklerindeki yüksek sıcaklık ile ilgili olan ve bu güçle ısınarak oluşan enerjiye, jeotermal enerji adı verilmektedir. Yerin derinliklerine doğru inildikçe sıcaklığın yükselmesi, jeotermal enerji oluşumuna zemin hazırlamaktadır. Bilindiği gibi, yerkabuğundan aşağıya doğru her 33 m derinliğe inildikçe, sıcaklık ortalama 1ºC yükselmektedir. Öyle ki, zeminin tektonik ve litolojik özelliklerine bağlı olarak, belirtilen derinlik miktarında bölgelere göre farklılıklar ortaya çıkabilmektedir. Örneğin, yerkabuğunun deforme olduğu sahalarda 1ºC sıcaklık artışı her 2-3 m derinlikte olmaktadır. Söz konusu alanlar, jeotermal enerji oluşumu için oldukça uygun koşullara sahiptir. Gerçekten de yeryüzünde jeotermal enerji kaynaklarının dağılışı ile tektonik kuşaklar, kırık sistemleri ve volkanik alanlar arasında yakın bir ilişki söz konusudur.

5 Jeotermal enerjinin oluşum modeli

6

7 JEOTERMAL ENERJİNİN ÜSTÜNLÜKLERİ
POTANSİYEL ZENGİNİ OLDUĞUMUZ ,ULUSAL BİR KAYNAKTIR. YENİLENEBİLİR ENERJİ KAYNAĞIDIR. DİĞER ENERJİ TÜRLERİNE GÖRE DAHA UCUZDUR. ÇEVRE KİRLİLİĞİNE YOL AÇMAZ.

8 Dünya’da Jeotermal Enerji
  İlk çağlardan beri ilkel yollarla sağlık amaçlı olarak yararlanılan doğal sıcak su kaynakları ilk defa 1827 yılında İtalya'da asit borik elde etmek amacıyla kullanılmıştır. Daha sonra 1904 yılında Larderello (İtalya) yöresinde yine ilk defa jeotermal buhardan elektrik üretimine başlanmış ve 1912 yılında gücü KWe (kilowatt elektrik) olan ilk turbo jeneratör kurulmuştur larda ise bu enerji İzlanda nın Reykjavik kentinde ısıtma amacıyla kullanılmaya başlanmıştır yılında Yeni Zelanda Wairakei sahasında turistik bir otele sıcak su temini amacıyla başlanan sığ sondajlara daha sonra, elektirİk elde edebilmek amacıyla devam edilmiş ve 1954 yılında 200 MWe elektrik kapasiteli bir santral kurulmuştur. 1960'da Amerika'da, 1961'de Meksika'da ve 1966'da Japonya'da santraller kurularak jeotermal enerjinin kullanımı dünya çapında yayılmıştır.

9 Jeotermal Saha

10 Dünya çapında, 2010 yılı itibariyle jeotermal elektrik santrali
kurulu kapasitesi (10,7GW) (Bertani, 2010).

11 DÜNYADA JEOTERMAL ENERJİ NİN DOĞRUDAN KULLANIMI (DÜNYA JEOTERMAL KONGRESİ 2000)
ÜLKELER KURULU GÜÇ MWT ÜRETİM GWh/yıl ÇİN 2814 8724 JAPONYA 1159 7500 ABD 5366 5640 İZLANDA 1469 5603 TÜRKİYE 820 4377 YENİ ZELANDA 308 1967 GÜRCİSTAN 250 1752 RUSYA 307 1703 FRANSA 326 1360 MACARİSTAN 391 1328 İSVEÇ 377 1147 MEKSİKA 164 1089 İTALYA 1048 ROMANYA 152 797 İSVİÇRE 547 663

12 And Volkanik Kuşağı:Güney Amerika’nın batı sahillerinde bulunan bu kuşaK Venezuella, Kolombiya, Ekvator, Peru, Bolivya, Şili ve Arjantin’i kapsamaktadır.

13 DOĞU AFRİKA RİFT SİSTEMİ:Aktif olan bu sistem Zambiya,Malavi,Tanzanya, Uganda,Kenya,Etopya gibi ülkeleri içine alır.

14 ORTA AMERİKA VOLKANİK KUŞAĞI: Guatelama,El Salvador,Kosta Rika,Panama’yı içine alan bu kuşakta çok sayıda jeotermal sistem bulunmaktadır. Bunların dışında, Kanada, ABD, Japonya, Doğu Çin,Filipinler, Endonezya gibi ülkelerde verimli jeotermal sahalara sahiptir.

15 DÜNYA TEKNOLOJİSİNDE ULAŞILAN DÜZEY
Jeotermal ısıtma sistemlerinde ve elektrik santrallerinde kullanımı dünyada son yıllarda hızla artmaktadır. İkili çevrim elektrik santrallerinin kullanılmasıyla 80 oile 170 oc sıcaklıktaki jeotermal akışkandan elektrik enerjisi üretilebilmektedir.buharı ozon tabakasına zarar vermeyen,zehirli olmayan ve düşük sıcaklıklarda kolayca buharlaşabilen hidrokarbonların kullanıldığı bu tür santraller özellikle ABD’de yaygın olup santral güçleri mw arasında değişmektedir.

16 JEOTERMAL ENERJİNİN KULLANIM ALANLARI

17 JEOTERMAL AKIŞKANIN SICAKLIĞINA GÖRE KULLANIM YERLERİ
OC 180-Yüksek konsantrasyon solüsyonunun buharlaşması,amonyum absorpsiyonu ile soğutma 170-Hidrojen sülfit ile ağır su eldesi 160-Kereste kurutulması,balık vb. yiyeceklerin kurutulması 150-Bayer’s yoluyla alüminyum eldesi 140-Çiftlik ürünlerinin çabuk kurutulması 130-Şeker endüstrisi,tuz eldesi

18 120-Temiz su eldesi,tuzlu oranın arttırılması
110-Çimento kurutulması 100-Organik maddelerin kurutulması (yosun,et,sebze) 90-Balık kurutma

19 80-Ev ve sera ısıtma 70-Soğutma 60-Kümes ve ahır ısıtma 50-Mantar yetiştirme 40-Toprak ısıtma,kent ısıtması,sağlık tesisleri 30-Yüzme havuzları,fermantasyon,damıtma 20-Balık çiftlikleri

20

21 KİMYASAL MADDE ÜRETİMİ
Jeotermal akışkandan borik asit,amonyumbikarbonat,ağır su(döteryum oksit) vb. maddelerin elde edilmesinde Jeotermal akışkandaki co2 den kuru buz elde edilmesinde (ABD,Türkiye), sağlık ve termal tesislerde birçok ülkelerde kullanılmaktadır.

22

23 ELEKTRİK ÜRETİMİ Jeotermal sahada açılan kuyulardan üretilen akışkan seperatörlerde buhar ve su olarak ayrıştıktan sonra buhar tribünlere gönderilerek jenaratör aracılığıyla elektrik üretimi sağlanır.

24

25

26 ISI ÜRETİMİ Jeotermal akışkanın ısıtılacak alanda radyatör ve uygun borular sistemi aracılığıyla dolaştırılması suretiyle ısıtma sağlanmaktadır.

27

28 KONUT ISITMACILIĞI

29 TARIM SEKTÖRÜNDE KULLANIM
Tarım sektöründeki modernleşme,sektörün enerji kullanım payının artmasına yol açmıştır.özellikle kırsal kesimlerde elektrik dışında,konutların, hayvan barınaklarının ve seraların ısıtılması için “jeotermal enerjiden” yaralanılmaktadır.

30 TERMAL TURİZM VE SAĞLIK AMAÇLI KULLANIMI
Sıcak suların içeriğinden kaynaklanan ısıl eneji,mineral,tuz,gaz ve yararlı ölçüdeki radyoaktif içeriğin insan sağlığını olumlu yönde etkilediği belirlenmiştir.

31

32 İzlanda Reykjavik’te jeotermal enerji öncesi ve sonrası görülmektedir.
JEOTERMAL ENERJİ VE FOSİL YAKIT KULLANIMI İzlanda Reykjavik’te jeotermal enerji öncesi ve sonrası görülmektedir.

33 JEOTERMAL ENERJİNİN ÖNEMİ
Havamızı Temiz Tutalım Fosil yakıtları kullanmak yerine, Jeotermal kaynaklardan elde edilen elektriği kullanarak,her yıl 22 milyon ton CO2, 200 bin ton nitrojen oksit ve 110 bin ton külün atmosfere atılmasını önlemekteyiz.

34 JEOTERMAL ENERJİNİN ÇEVREYE ETKİSİ
Jeotermal enerji,fosil yakıtların tüketimiyle ilgili olarak ortaya çıkan sera etkisi ve asit yağmuru gazlarının atmosfere atılmasından doğan çevre sorunlarının önlenmesi bakımından büyük önem taşımaktadır. Jeotermal enerjiye dayalı modern elektrik santrallerinde CO2,NOx,SOx atımı çok düşük düzeydedir. Merkezi ısıtma sistemlerinde ise söz konusu gazların deşarj miktarları ise sıfır değerine inmiştir. Kömür yakıtlı santrallerdeki CO2 atımı,eski tip santrallerdekine oranla 1600 kat daha fazladır.bu karşılaştırmaların ışığında jeotermal enerjinin avantajı kesin olarak görülmektedir. Gelişen teknolojiye ve duyulan ihtiyaca göre atık su içindeki bazı kimyasal maddeler üretilerek,akışkan bu yönden zararsız hale getirilebilmektedir.

35 Türkiye’de Jeotermal Enerji
Türkiye’de genç volkanik faaliyetlerin cereyan ettiği Akdeniz volkanik kuşağı üzerinde olup ayrıca, Alp zincirinin teşekkülü esnasında şiddetli kırılma tektoniğine maruz kalmıştır. Böylece Batı Anadolu da W-E doğrultulu horstlarla ve bunların arasında grabenler teşekkül etmiş, bu arada derinlere inen faylardan bazıları, jeotermal saha oluşumuna uygun tipte asitik tüf, lav ve iğnimbiritlerin yükselmelerine imkan sağlamışlardır.

36

37 Türkiye jeotermal enerji potansiyeli
Jeolojik olarak Alp-Himalaya dağ oluşum kuşağında yer alan ülkemiz, genç tektonik dönemde kazanmış olduğu çok kırıklı yapısı ve geçirmiş olduğu volkanik faaliyetlerden dolayı jeotermal kaynaklar yönünden zengin konumdadır. Yaklaşık 1000 civarında doğal çıkış halinde sıcak su ve doğal mineralli su kaynağı bulunmaktadır. Bu zenginliği kısaca bilimsel olarak “potansiyel”, açığa çıkarılan kısmı ise “kapasite” olarak ifade edebiliriz. Ülkemizin jeotermal ısı potansiyeli yaklaşık MW termal olarak kabul edilmektedir.

38 Türkiye’ de jeotermal enerji çalışmaları yaklaşık 45 yıl önce MTA Genel Müdürlüğü tarafından başlatılmış ve bugüne kadar yapılan çalışmalarla 190 adet jeotermal alanın varlığı keşfedilmiştir. Bu alanların % 79’u Batı Anadolu’da, % 8,5’i Orta Anadolu’da, % 7,5’i Marmara Bölgesinde, % 4,5’i Doğu Anadolu’da ve % 0,5’i diğer bölgelerde yer almaktadır. Jeotermal kaynaklarımızın % 94’ü düşük ve orta sıcaklıklı olup, doğrudan uygulamalar (ısıtma, termal turizm, mineral eldesi v.s.) için uygun olup, % 6’sı ise dolaylı uygulamalar (elektrik enerjisi üretimi) için uygundur. Keşfedilen bu sahalarda yapılan sondajlı arama sonucunda ülkemiz ısı potansiyelinin yaklaşık % 12,3’ü olan 3881 MWt ısı enerjisi açığa çıkarılmıştır.

39 Açığa çıkarılan bu ısı enerjisinin yaklaşık % 30’u (İzmir, Gönen, Simav, Kırşehir, Kızılcahamam, Afyon merkez, Sandıklı, Kozaklı, Diyadin, Salihli, Edremit, Sarayköy, Bigadiç gibi yerleşim birimlerinin konut ve termal tesis ısıtmasında ( yaklaşık konut eşdeğeri), sera (yaklaşık 1000 dönüm) ve sağlık ve termal turizm (215 adet tesis) alanlarında kullanılmaktadır.

40

41 Türkiye’de elektrik üretimine uygun sahalar
1. Aydın-Germencik (232 0C), 2.Denizli-Kızıldere (242 0C), 3.Manisa-Alasehir-Kurudere (184 0C) 4.Manisa-Salihli-Göbekli (182 0C) 5.Çanakkale-Tuzla (174 0C) 6.Aydın-Salavatlı (171 0C) 7.Kütahya-Simav (162 0C) 8.İzmir-Seferihisar (153 0C) 9.Manisa-Salihli-Caferbey (150 0C) 10.Aydın-Yılmazköy (142 0C) 11.İzmir-Balçova (136 0C) 12.İzmir-Dikili (130 0C)

42

43 Ülkemizde jeotermal Kaynakların Kullanımı ve Hedefler
Türkiye’de elektrik üretimine uygun potansiyel içeren 17 adet saha bulunmaktadır ve bu sahaların tamamı Batı Anadolu’da yer almaktadır. Bu sahalarda üretim yapan kurulu güç 91,7 Mwe dir. Tüm bu sahaların geliştirme çalışmaları tamamlandığında bu kapasite 630 Mwe’ ye çıkarılabilecektir. Bugün için bu sahalardan Denizli-Kızıldere’de 15 Mw ve 5 Mw, Aydın-Salavatlıda 7,4 Mw ve 9,5 Mw, Aydın Germencikte 47,4 Mw ve Çanakkale’de 7,5 Mw kurulu güce sahip santralden elektrik üretilmektedir. Ayrıca MTA Genel Müdürlüğü tarafından keşfedilmiş diğer sahalardan Aydın-Umurlu, İzmir-Seferihisar, Aydın-Atça ve Aydın-Bozköy’de gerek sözleşme, gerekse ihale yolu ile yatırımcılara devredilmiş sahalarda santral inşa çalışmaları devam etmektedir.

44 Bugün için bilinen 17 adet jeotermal sahada  teknik ve ekonomik olarak elde edilmeye hazır 630 MWe potansiyel mevcut olup bu sahaların geliştirilmesi ve yeni ilave edilecek sahalar ile birlikte  önümüzdeki 10 yıllık süreç içersinde jeotermal kaynaklara dayalı elektrik üretim tesisleri kapasitesinin 1000 MWe ulaşabileceği değerlendirilmektedir. Ülkemizde jeotermal enerjiden doğrudan kullanım olarak merkezi ısıtma, sera ısıtması ve termal turizmde yararlanılmaktadır. Ülkemizde 18 yerleşim birimimizde merkezi konut ısıtması (67700 konut eşdeğeri, 608 MWt), 15 sahada seracılık, ( m2, 292 MWt) ve 200’ün üzerinde  termal tesiste tedavi ve termal turizm amaçlı yararlanılmaktadır.

45 MTA Genel Müdürlüğü’nce önümüzdeki dokuzuncu 5 yıllık plan döneminde akışkanlarca taşınarak sığ derinliklerde (yaklaşık 1000 m civarı) geçirgen-gözenekli kayalara depolanmayla oluşmuş jeotermal sistemlerin geliştirilerek daha derin kısımlarının ( m) araştırılması yanında; akışkan içermeyen çok daha derinlerde bulunan ve içersinde ısı depolanmış kızgın kayaların keşfedilmesi amacıyla m derinlere kadar sondajlı arama yapma planlanmış olup 2009 yılından itibaren bu projeler uygulamaya konulmuştur. Bu kapsamda Kütahya ili Şaphane ilçesinde 3000 m olarak planlanmış olup sondaj çalışması devam etmektedir. Gelecek 10 yılda gelişen bilim ve teknoloji sayesinde kızgın kuru kayalardan elektrik ve ısı üretimi daha ekonomik hale gelecek ve böylece ticari bir anlam kazanacaktır. Bu amaçla ülkemiz yer kabuğu içerisindeki bu alanların tespit edilerek fizibiliteye esas fiziksel ve kimyasal tüm parametrelerinin belirlenmesi ve bunların harita ve envanterinin çıkarılması büyük önem taşımaktadır.

46

47 JEOTERMAL ENERJİNİN FAYDALARI
Temiz ve Güvenli bir enerji kaynağıdır. Yenilenebilir ve devam ettirilebilir, bir enerji kaynağıdır. Sürekli ve sabit bir enerji kaynağı sağlar, Fosil yataklarından enerji sağlar ve enerji kaynaklarına çeşitlik getirir. İthal enerji gereksinimini azaltır ve yerel ekonomiye katkı sağlar, Uzak yerleşim birimleri için modüler ve arttırılabilir, enerji santrali çözümleri sağlar.

48 KIZILDERE-DENİZLİ JEOTERMAL SAHASI

49 DENİZLİ-GÖLEMEZLİ JEOTERMAL KUYUSU

50 DİKİLİ JEOTERMAL KUYU ÜRETİMİ


"JEOTERMAL ENERJİ Rahime AKYÜZ" indir ppt

Benzer bir sunumlar


Google Reklamları