Sunuyu indir
1
Bölüm 7 BOYUT ANALİZİ VE MODELLEME
2
Amaçlar Boyut, Birim ve Boyutsal Homojenliği anlamak
Boyut analizinin yararlarını kavramak Tekrarlayan değişkenler yöntemini öğrenmek Benzerlik kavramını öğrenmek ve deneysel modellemede kullanmak
3
Boyutlar ve Birimler Genel Hatırlatmalar
Boyut: Bir fiziksel büyüklüğün ölçüsünü verir, örneğin uzunluk, kütle, zaman vb. Birim: Sayının bilinen bir ölçeğe göre niteliğini temsil eder, örneğin (m), (s), (kg) 7 Ana Boyut Vardır: Kütle m (kg) Uzunluk L (m) Zaman t (sec) Sıcaklık T (K) Elektrik akımı I (A) Işık miktarı C (cd) Madde miktarı N (mol)
4
Boyutlar ve Birimler Ana ya da birincil boyutların dışında kalan tüm boyutlar bu 7 ana boyuttan türetilebilir Örnekler: {Hız} = {Uzunluk/Zaman} = {L/t} {Force} = {Kütle*Uzunluk/Zaman} = {mL/t2}
5
Boyutsal Homojenlik BH yasası, toplanan tüm terimlerin aynı boyuta sahip olması gerektiğini ifade eder (Elma+Armut ?) Örnek: Bernoulli denklemi {p} = {kuvvet/alan}={kütle x uzunluk/zaman x 1/uznlk2} = {m/(t2L)} {1/2V2} = {kütle/uznlk3 x (uznlk/zaman)2} = {m/(t2L)} {gz} = {kütle/uzunlk3 x uzunlk/zaman2 x uzunlk} ={m/(t2L)}
6
Denklemlerin Boyutsuzlaştırılması
Boyutsal olarak homojen bir denklemin her bir terimini değişken ve sabitlerden olşan bir gruba böldüğümüzde, denklemi boyutsuzlaştırmış oluruz. Böyle denklemlere “boyutsuz” denir. Boyutsuzlaştırma sonucu genellikle Re, Pr, Fr gibi boyutsuz sayılar elde edilir.
7
Denklemlerin Boyutsuzlaştırılması
Bernoulli denklemini boyutsuzlaştıralım. Bir denklemi boyutsuzlaştırmak için önce tüm parametrelerin boyutları yazılır: {p} = {m/(t2L)} {} = {m/L3} {V} = {L/t} {g} = {L/t2} {z} = {L} Şimdi de Ölçeklendirme (Referans) Parametrelerini seçelim: L, U0, 0
8
Denklemlerin Boyutsuzlaştırılması
Tüm değişkenler boyutsuz olarak ifade edilir: Bu ifadelerdeki p, , V, g, z değişkenleri denklemler yerine konur:
9
Denklemlerin Boyutsuzlaştırılması
Tüm terimler 0U02 e bölünür ve sıkıştırılamaz akış için * = 1 alınır Ancak g* = 1/Fr2 olduğundan
10
Denklemlerin Boyutsuzlaştırılması
Basınç veya basınç farkını boyutsuzlaştırmada genellikle 1/20U02 (dinamik basınç) terimi kullanılır. Bu durumda çok az farklı bir Bernoulli denklemi elde edilir
11
Denklemlerin Boyutsuzlaştırılması
Boyutsuzlaştırmanın önemi Önemli parametreler hakkında görüş kazandırır Problemdeki parametre sayısını azaltır Daha kolay iletişim (birimlerden bağımsız) Daha az deney gereksinimi Daha az simülasyon ihtiyacı Elde edilen sonuçlar denenmemiş durumların kestiriminde kullanılabilir.
12
Boyut Analizi ve Benzerlik
Bir denklemin var olması halinde boyutsuzlaştırma çok faydalıdır Ancak uygulamada denklem genellikle ya bilinmez ya da çözüm çok güçtür. Bu tür hallerde deney yapmak, güvenilir bilgi edinmenin tek yoludur. Zaman ve paradan tasarruf sağlamak için deneylerde çoğu zaman geometrik olarak ölçeklendirilmiş modeller kullanılır. Tam ölçekli prototip için elde edilen sonuçların anlamlı olabilmesi için deney koşulları ve sonuçlar uygun biçimde ölçeklendirilmelidir Boyut analizi bu hallerde çok faydalıdır
13
Boyut Analizi ve Benzerlik
Boyut Analizinin Amaçları Deney tasarlama ve sonuçların raporlanmasında yardımcı olacak boyutsuz parametreler oluşturma Model üzerinden prototipin performansını kestirmek için ölçeklendirme yasaları elde etmek. Parametrelere arasındaki ilişkilerin trendini kestirmek.
14
Boyut Analizi ve Benzerlik
Geometrik Benzerlik – Model ve prototip aynı geometrik şekle sahip olmalıdır. Karşılıklı boyutların oranı sabit olmalıdır. Kinematik Benzerlik – Model ve prototipte karşılıklı hızlar orantılı olmalıdır. Dinamik Benzerlik – model akışındaki tüm kuvvetler prototip akışta bunlara karşılık gelen kuvvetlerle orantılı olmalıdır. Tam Benzerlik- Yukarıdaki 3 benzerlik koşulu sağlanmışsa, tam benzerlik elde edilmiştir. Ancak bu her zaman mümkün olmayabilir (akarsu ve ırmak akışları)
15
Boyut Analizi ve Benzerlik
Tam benzerliğin sağlanabilmesi için model ve prototip arasındaki tüm gruplarının aynı olması gerekir. Peki nedir? Şu bizim 3.14 olan garip sayı mı? Re, Fr, CD, gibi boyutsuz parametreleri büyük harfi ile göstereceğiz. Bunun 3.14 ile bir ilgisi yoktur!!! Bir otomobil deneyi ele alalım Direnç kuvveti F = f(V, , L) Boyut analizi yardımıyla bu 5 parametreli problemi 2 parametreye indirgemek mümkündür:
16
Tekrarlayan Değişkenler Yöntemi
Boyutsuz terimleri birkaç yolla elde edilebilir. Biz burada 6 adımdan oluşan Tekrarlayan Değişkenler Yöntemini vereceğiz. Neymiş bu 6 adım bakalım: Probleme dahil olabilecek parametrelerin listesini çıkarın ve bunları sayın (n=?). Bu n tane parametrenin her birinin ana boyutlarını yazın Toplam kaç ana boyut varsa bunların sayısı j olsun. Bu durumda problemde beklenen terimlerinin sayısı k = n – j olur. Problemdeki değişkenlerden j tanesini tekrarlayan değişken olarak alın. Çoğu problemde bunlar uzunluk, hız ve kütle (veya yoğunluktur.
17
Tekrarlayan Değişkenler Yöntemi
5. K tane ‘ terimini oluşturun, gerekli gördüğünüz değişiklikleri bu aşamada yapın Fonksiyonel ilişkinin son halini yazın ve yaptığınız cebirsel işlemleri kontrol edin. Tekrarlayan değişkenleri seçimi son derece önemlidir. Bu konuda dikkat edilmesi gereken önemli noktalar Tablo 7-3 te özetlenmiştir.
18
ÖRNEK Adım 1: İlgili parametreler: z=f(t,w0,z0,g) n=5
Adım 2: Ana boyutlar Adım 3: İlk tahmin olarak, iki ana boyut olduğundan(L ve t) j =2 alalım. Buna göre beklenen sayısı k=n-j=5-2=3 Adım 4: Tekrarlayan değişkenler: w0 ve z0 Vakum ortamda düşen top
19
Tekrarlayan Değişkenlerin Seçimi
Asla bağımlı değişkeni alma, aksi halde tüm terimlerinde görünür. Seçilen parametreler kendi aralarında boyutsuz bir grup oluşturmamalı, aksi halde diğer terimlerini elde etme imkanı kalkar. Seçilen parametreler tüm ana boyutları temsil edebilmeli. Kendileri zaten boyutsuz olan parametreleri seçme. Aynı boyutta ya da sadece üsleri farklı iki parametre seçme. Boyutlu sabitleri boyutlu değişkenlere tercih edin, böylece boyutlu değişken tek bir teriminde oluşur. Her teriminde görülebileceği için ortak parametreleri seçin. Basit değişkenleri tercih edin.
20
Örnek (devam) Adım 5: Her seferinde tekrarlayanların dışında kalan parametrelerden birini tekrarlayanlarla çarpım halinde ifade edin. Böylece her seferinde bir oluşturmuş olursunuz. 1 = zw0a1z0b1 a1 ve b1 tespiti yapılacak sabitlerdir. Adım 2 deki ana boyutları kullanarak bu sabitleri bulun Zaman: Uzunluk: Sonuç:
21
Örnek (devam) Step 5 (devam)
Aynı işlemi, bu sefer t yi kullanarak 2 için yapalım 2 = tw0a2z0b2 Zaman: Uzunluk: Sonuç:
22
Örnek (devam) Step 5 (devam) Son olarak g yi alarak 3 ü oluşturalım
3 = gw0a3z0b3 Zaman: Uzunluk: Sonuç
23
Örnek (devam) Step 6: Elde ettiğin ‘ler gerçekten boyutsuz mu? Kontrol et!! Sonuç ifadeyi yaz: Veya boyutsuz değişkenler cinsinden; DİKKAT: Bu yöntem boyutsuz ‘ grupları arasındaki fonksiyonel ilişkiyi doğru biçimde ortaya koymaktadır, ancak denklemin tam matematiksel biçimi konusunda fikir vermez.
24
Deneysel Test Etme ve Tam Olmayan Benzerlik
Boyutsuz analizin en yararlı uygulamalarından biri de fiziksel/sayısal deney tasarlama ve sonuçları raporlama. Deney kurma ve veriler arasındaki ilişkiyi ortaya koymadır 5 parametreli bir problem bulunsun. Bunlardan 1 tanesi bağımlı değişken olsun Her bir parametreyi 5 farklı ölçümle deneyecek olsak. Bu durumda 4 tane bağımsız parametre için 54=625 defa deney yapmamız gerekir!! Ancak problemi 2 tane ’ye indirgersek,bağımsız değişken sayısı 4 ten 1 e iner ve toplamda sadece 51=5 deney yeterli olur. 5 << 625
25
Deneysel Test Etme ve Tam Olmayan Benzerlik
Wanapum Dam on Columbia River Serbest yüzeyli akışlar, tam dinamik benzerliğe ulaşmada bazı zorluklar çıkarır. Hidrolik uygulamalarında derinlik, yatay boyutların yanında çok küçük kalır. Eğer geometrik benzerlik kullanılıyorsa model derinliği çok sığ kalır ve bu da başka sorunlara yol açar: Yüzey gerilimi etkileri (Weber sayısı) önemli hale gelir. Veri alımı zorlaşır. Bu tür durumlarda, deneysel düzeltmelere ihtiyaç bırakan çarpık modeller kullanılır. Physical Model at Iowa Institute of Hydraulic Research
26
Deneysel Test Etme ve Tam Olmayan Benzerlik
Tam Ölçekli Destroyer Gemi hidrodinamiği içinFr sayısı benzerliği sağlanırken Re’ler farklı olabilir Neden acaba? Tam benzerlik şartına bakalım: Re ve Fr nin aynı olması için model testinde viskozitenin aşağıdaki eşitliği sağlaması gerekir ki fonksiyonu olması gerekir ki bu pek kolay değildir. 1/20 ölçekli model
Benzer bir sunumlar
© 2024 SlidePlayer.biz.tr Inc.
All rights reserved.