Sunuyu indir
Sunum yükleniyor. Lütfen bekleyiniz
1
İntegralinde u=g(x) ve
Dönüşümü yapılarak integral haline getirilir. Örnek integralini hesaplayınız Çözüm:
2
Örnek-2- integralini hesaplayınız.
Çözüm: Örnek integralini hesaplayınız.
3
Örnek-4- integralini hesaplayınız.
Çözüm:
4
Örnek-5- integralini hesaplayınız.
Çözüm:
5
Örnek-6- integralini hesaplayınız.
Çözüm: Örnek integralini hesaplayınız.
6
Örnek-8- integralini hesaplayınız.
Çözüm:
7
Örnek-9- integralini hesaplayınız.
Çözüm: Örnek integralini hesaplayınız.
8
Örnek-11- integralini hesaplayınız.
Çözüm: I1 I2
9
Örnek-12- integralini hesaplayınız.
Çözüm: Örnek integralini hesaplayınız.
10
Örnek-14- integralini hesaplayınız.
Çözüm:
11
Örnek-1- integralini hesaplayınız.
Çözüm:
12
Örnek-2- integralini hesaplayınız.
Çözüm:
13
Örnek-3- integralini hesaplayınız.
Çözüm: I
14
Örnek-4- integralini hesaplayınız.
Çözüm:
15
Örnek-5- integralini hesaplayınız.
Çözüm: I
16
Örnek-1- integralini hesaplayınız.
Çözüm: X+1 - - 2
17
Örnek-2- integralini hesaplayınız.
Çözüm:
18
Örnek-3- integralini hesaplayınız.
Çözüm:
19
Örnek-4- integralini hesaplayınız.
Çözüm:
20
belirsiz integrali için
Aşağıdakilerden hangisi doğrudur? A) B) C) D) E)
21
Belirsiz integrali aşağıdakilerden
hangisi olamaz? A) B) C D) E)
22
İntegralinin çözümü aşağıdakilerden
hangisidir? A) B) C) D) E)
23
Belirsiz integrali için aşağıdakilerden
hangisi doğrudur? A) B) C) D) E)
24
belirsiz integrali için aşağıdakilerden
hangisi doğrudur? A) B) C) D) E)
25
6. belirsiz integrali için
Aşağıdakilerden hangisi doğrudur? A) B) C) D) E)
26
integralinin değeri aşağıdakilerden
hangisidir? A) B) C) D) E)
27
belirsiz integrali için, aşağıdakilerden
hangisi doğrudur? A) B) C) D) E)
29
Örnek: f(x)=2/x2 eğrisine x=1 apsisli noktadan çizilen teğeti ile eksenler arasındaki düzlemsel bölgenin oy ekseni etrafında döndürülmesi ile oluşan şeklin hacmi kaç br3’tür? Çözüm: Meydana gelen düzlemsel bölgenin alanı şekildeki gibidir. Önce f(x)in x=1 noktasındaki teğeti bulunur. -3/2 3/2 x y f(x)=-2x*2/x4 =-4/x3 m=f-1(x)=-4 x=1 için f(1)=2 A(1,2) Teğetin denklemi: y-y1=m(x-x1) y-2=-4(x-1) y=-4x+6
30
1. Yol: Şekil konidir. Koninin hacminden; 2.Yol:
31
Örnek: Çözüm: A (0 , r) = (x1 , y1) , B = (h , 0) = (x2 , y2)
İntegral yardımıyla koninin hacmini bulunuz. Çözüm: Koninin yüksekliğine h ve taban yarıçapına r diyelim ve [AB]doğrusunun denklemini bulalım. A(0,r) B(h,0) y x A (0 , r) = (x1 , y1) , B = (h , 0) = (x2 , y2) (x-x1) * (y2-y1) = (x2-x1) * (y-y1) (x-0) * (0-r) = (h-0) * (y-r) -x*r = h*(y-r) ise y=r-(x*r)/h
32
Buna göre;
33
Örnek: y=x2-2x eğrisi x=3 doğrusu ve x ekseni arasında kalan alan kaç br2’dir?
34
ÇÖZÜM: A=A1+A2 y=x2-2x y x 3 2
35
Örnek: y=x3 eğrisi y=3 doğrusu ve y-ekseni arasında kalan alan kaç br2’dir?
36
ÇÖZÜM: -1 y=3 y=x3-1
37
Örnek: y=lnx eğrisi ox ekseni ve x=e doğrusu arasında kalan düzlemsel bölgenin alanı kaç br2’dir?
38
ÇÖZÜM: e 1 y=lnx y x CEVAP B
39
Örnek: y=2-x2 ile y=x2 eğrileri tarafından sınırlanan alan kaç br2’dir?
40
ÇÖZÜM: -1 1 y=x2 y=2-x2 y=x2 y=2-x2 x2=2-x2 2x2= ise x2=1 x=1, x=-1
41
Örnek: f(x)=lnx eğrisinin x=e noktasından çizilen teğeti ile x ekseni ve f(x) = lnx eğrisi arasındaki alan kaç br2’dir?
42
ÇÖZÜM: Önce teğetin denklemi bulunur.
y=lnx 1 e f(x) = lnx A(e,1) f´(x)=1/x ise m=1/e dir y-y1=m(x-x1) y-1=1/e(x-e) y=x/e y=x/e
43
Örnek: f(x)=x2 parabolü ve g(x)=x doğrusu arasında kalan düzlemsel bölgenin ox ekseni etrafında 360 döndürülmesi ile oluşan cismin hacmi nedir?
44
ÇÖZÜM: f(x) =g(x) x2=x x=0 veya x=1
f(x) =x2 g(x) = x
45
Örnek: y=x2 parabolü, x=0 ve y=2 doğruları arasında kalan bölgenin Oy eksen etrafında 360 döndürülmesi ile elde edilen dönnel cismin hacmini bulunuz.
46
ÇÖZÜM: y = x2 x = y (x >=0) dır. Oluşan cismin hacmi:
47
Örnek: x2+(y-3)2 =4 çemberinin sınırladığı bölgenin, Oy ekseni etrafında dönmesinden oluşan cismin hacmi nedir?
48
Vy=4/3 br3 =4/3*8 32/3 br3 Oluşacak şekil küre olduğundan
ÇÖZÜM: M(0,3) r=2 Oluşacak şekil küre olduğundan Kürenin hacmi ile de çözülebilir. 3 1 5 y=(4-x2)+3 -2 2 Vy=4/3 br3 =4/3*8 32/3 br3
49
Örnek: y= x2 eğrisi ile y=4 doğrusu x ekseni etrafında döndürülüyor. Elde edilen cismin hacmi kaç br3’tür?
50
ÇÖZÜM: x2=y x2= x=2 , x=-2 y2=x2 y1=4 -2 2
Benzer bir sunumlar
© 2024 SlidePlayer.biz.tr Inc.
All rights reserved.