Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları ui’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin.

Benzer bir sunumlar


... konulu sunumlar: "Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları ui’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin."— Sunum transkripti:

1 Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları ui’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin geçerliliği ui’nin normal dağılmasına bağlıdır. Çünkü ui normal dağılıyorsa, EKK b1 ve b2’nin tahmincileri de normal dağılır. Normal dağılmış değişkenleri olan bir doğrusal fonksiyonun kendisi de NORMAL DAĞILIR.

2 - + E(ui)=0 ui değerleri

3 c2 uyum iyiliği testi c2a,sd =? c2hes > c2a,sd 1.Aşama
H0: ui’ler normal dağılımlıdır H1ui’ler normal dağılımlı değildir. 2.Aşama c2a,sd =? a = ? sd=? 3.Aşama 4.Aşama c2hes > c2a,sd H0 reddedilebilir

4 c2 uyum iyiliği testi 0.34 0.34 0.14 0.14 0.02 0.02 E(u)= 0 %68 -s +s
%95.5 -2s %99.7 +2s -3s +3s

5 c2 uyum iyiliği testi s = 12,138 3.4 4 7.0545 4.7091 -3.6364 11.0182
4.9818 3.4 3 1.4 0.2 1.4 1 2 0.2

6 c2 uyum iyiliği testi =

7 Jarque-Bera Normallik Testi
1.Aşama H0: ui’ler normal dağılımlıdır H1: ui’ler normal dağılımlı değildir c2a,sd =? 2.Aşama Sd=? a = ? 3.Aşama JB > c2a,sd 4.Aşama H0 hipotezi reddedilebilir

8 Jarque-Bera Normallik Testi

9 Jarque-Bera Normallik Testi
351.07 104.43 -48.09 123.64 -38.06 49.77 22.18 13.22 121.40 205.27 312.32 24.82 11.31 59.43 358.93 491.76 174.86 615.95 128.00 7.0545 4.7091 4.9818 Se = 0 Se2 = Se3 = Se4 =

10 Jarque-Bera Normallik Testi
= = s2 = = =-0.023 = 2.09

11 Jarque-Bera Normallik Testi
1.Aşama H0: ui’ler normal dağılımlıdır H1: ui’ler normal dağılımlı değildir 2.Aşama a = 0.05 Sd=2 c2a,sd =5.991 3.Aşama 0.3459 4.Aşama JB < c2a,sd H0 hipotezi reddedilemez.

12 ÇOKLU DOĞRUSAL BAĞLANTI
12

13 ÇOKLU DOĞRUSALLIĞIN ANLAMI
Çoklu doğrusal bağlantı; Bağımsız değişkenler arasında doğrusal (yada doğrusala yakın) ilişki olmasıdır. 1. parametreler belirlenemez hale gelir. Her bir parametre için ayrı ayrı sayısal değerler bulmak zorlaşır. 2. ise bu değişkenlere ortogonal değişkenler denir ve katsayıların tahmininde çoklu doğrusal bağlantı açısından hiçbir sorun yoktur. 3. ise tam çoklu doğrusal bağlantı yoktur.

14 Çoklu Doğrusal Bağlantı
X3 X2 rX2X3= 1 Tam Çoklu Doğrusal Bağlantı

15 ÇOKLU DOĞRUSALLIĞIN NEDENLERİ
İktisadi değişkenlerin zaman içerisinde birlikte değişme eğiliminde olmaları Bazı açıklayıcı değişkenlerin gecikmeli değerlerinin ilişkide ayrı birer etmen olarak kullanılmasıdır. Genellikle zaman serilerinde görülür.

16 Çoklu Doğrusal Bağlantının Ortaya Çıkardığı Sonuçlar
Regresyon Katsayılarının Değerleri Belirsiz Olur, Regresyon Katsayılarının Varyansları Büyür, t-istatistikleri azalır, Güven Aralıkları Büyür, R2 Olduğundan Büyük Çıkar, Katsayı Tahmincileri ve Standart Hataları Verilerdeki Küçük değişmelerden Önemli Ölçüde Etkilenirler,

17 ÇOKLU DOĞRUSALLIĞIN DOĞURDUĞU SONUÇLAR
a) Katsayıları tahminleri belirlenemez. b)Tahminlerin standart hataları sonsuz büyük olur.

18 İspat a)

19 İspat b) X2 yerine kX1 konursa

20 Çoklu Doğrusal Bağlantı
Araba Bakım Masrafları Model Tahminleri Değişkenler Model A Model B Model C Sabit Yas Km s.d. (-5.91) 53.45 (18.27) 55 0.856 (-7.06) 27.58 (9.58) 7.29 (0.06) 54 0.946 (-5.98) 7.35 (22.16) 55 0.897 Düzeltilmiş-R2

21 Ev Talebi Model Tahminleri
Değişkenler Model A Model B Model C s.d. Sabit Faiz Nüfus GSMH Düzeltilmiş-R2 0.375 20 687.90 (1.80) (-3.87) 0.91 (3.64) 0.348 19 14.90 (0.41) (-3.18) (-0.27) 0.52 (0.54) 20 0.371 (-2.40) (-3.87) 33.82 (3.61) r(Nüfus,faiz)= 0.91 r(GSMH,Nüfus)=0.99 r(GSMH,faiz)=0.88

22 ÇOKLU DOĞRUSAL BAĞLANTININ VARLIĞININ BELİRLENMESİ
Varyans Büyütme Modeli Yardımcı Regresyon Modelleri için F testi Klein – Kriteri Şartlı Sayı Kriteri Theil-m Ölçüsü

23 ÇOKLU DOĞRUSAL BAĞLANTININ BELİRLENMESİ
1.Varyans Büyütme Modeli: Varyans büyütme faktörü; parametre tahminlerinin ve varyanslarının çoklu doğrusal bağlantı nedeni ile gerçek değerlerinden ne derece uzaklaştığını gösterir. VIF kriteri

24 Çoklu doğrusal bağlantı önemlidir.
Çoklu doğrusal bağlantı etkisini araştırabilmek için k tane VIF eğeri 5 Çoklu doğrusal bağlantı önemlidir. .

25 Çoklu doğrusal bağlantı önemlisizdir.
Çoklu doğrusal bağlantı etkisini araştırabilmek için k tane VIF eğeri 5 Çoklu doğrusal bağlantı önemlisizdir. .

26 ÖRNEK: dönemi için Türkiye’nin GSMH(milyar TL), Para Arzı(PA, milyar TL), Dış Ticaret Açığı (DT, milyar TL) ve Toptan Eşya Fiyat Endeksi (TEFE,1987=100) değerleri verilmiştir. Yıllar GSMH PA DT TEFE 1990 425.6 1991 661.6 1992 1072.5 1993 1701.6 1994 3757.4 1995 7065.2 1996 1997 5.6588 1998 1999 2000 2001 2002 Varyans Büyütme Faktörü ile çoklu doğrusal bağlantı sorununu araştırınız.

27  5 çoklu doğrusal bağlılık önemlidir
Bu verilerden elde edilen model; Bağımsız değişkenleri sırası ile bağımlı değişken yaparak diğer bağımsız değişkenlerle regresyon modeli tahmin edilir.  5 çoklu doğrusal bağlılık önemlidir  5 çoklu doğrusal bağlılık önemlidir  5 çoklu doğrusal bağlılık önemlidir

28 2.Yardımcı Regresyon Modelleri için F testi
Bu yöntemde varyans büyütme faktöründe hesapladığımız belirlilik katsayılarından hesaplama yapılır. Sırası ile incelenen modelde yer alan her bir bağımsız değişken ayrı ayrı bağımlı değişken olmak üzere kalan diğer bağımsız değişkenlerle regresyona tabi tutulur. Oluşturulan söz konusu yeni regresyon modellerine yardımcı regresyon modelleri denir. Oluşturulan yardımcı regresyon modellerinin belirlilik katsayıları hesaplanarak F test istatistiği hesaplanır. Bu yöntem için temel hipotez bağımsız değişkenler arasında ilişki yoktur şeklindedir.

29 . Test istatistiği yukarıdaki her denklem için hesaplanır.
k: incelenen modelin tahmin edilen katsayı sayısı

30 UYGULAMA: Aynı örnek için yardımcı regresyon modeli ile çoklu doğrusal bağlantı sorununu inceleyiniz. 1.Aşama: H0: Çoklu doğrusal bağlantı yoktur. H1: Çoklu doğrusal bağlantı vardır. 2.Aşama: F0.05,(k-2),(n-k+1) =4.10 3.Aşama: 4.Aşama: Fhes > Ftab H0 reddedilir.

31 Fhes > Ftab H0 reddedilir.

32 Klein – Kriteri: Klein, bağımsız değişkenler arasındaki basit korelasyon katsayılarının kareleri modelin genel belirlilik katsayısından büyük olmadığı sürece çoklu doğrusallığın zararlı olmadığını savunmaktadır. Çoklu doğrusal bağlılık zararlıdır. Klein yukarıdaki kriterine göre küçük bir çoklu doğrusal bağlantı bile parametre tahminlerinde anlamsızlığa yol açabilir.

33 Bu durumda yardımcı regresyon modelleri için F testinde açıklandığı gibi, yardımcı regresyon modelleri tahmin edilir ve bunlardan elde edilecek çoklu belirlilik katsayısı ile karşılaştırılarak karar verilebilir.

34 UYGULAMA: Aynı örnek için Klein kriteri ile çoklu doğrusal bağlantı sorununu inceleyiniz.
Elde edilen yardımcı regresyon modelleri 1. Çoklu doğrusal bağlantı zararlı değildir. 2. Çoklu doğrusal bağlantı zararlı değildir. 3. Çoklu doğrusal bağlantı zararlı değildir.

35 Şartlı Sayı Kriteri: KARAR: 1. 2.
Bu kriterin hesaplanması için bu (X’X) matrisinin birim köklerinden (özdeğerlerinden) yararlanılır. (X’X) matrisinin en büyük birim kökü (1) ve en küçük birim kökü (2) ise şartlı sayı KARAR: 1. Çoklu doğrusal bağlantı orta derecedir. Çoklu doğrusal bağlantı yüksek derecedir. 2.

36 Örnek: 12 ailenin aylık gelirleri (Y), gıda harcamaları (X2) ve fert sayısı (X3) verileri aşağıdaki gibidir: Aile Y X2 X3 1 2.2 2.8 3 2 3.0 3.5 6 4.1 12.5 4 4.7 6.4 5 4.2 5.9 6.3 8,0 8 7 4.6 9.7 8.8 20.6 9 7.3 15.9 10 4.4 6.7 11 6.9 11.3 12

37 Ortalamadan farklar ile bağımsız değişkenler katsayı matrisi;

38 KARAR: Çoklu doğrusal bağlantı düşük derecededir.

39 Theil-m Ölçüsü Bağımlı değişkenle bağımsız değişkenler arasındaki ilişkiye dayanan bir ölçüdür. Bu ölçü için, modelin genel belirlilik katsayısı ile modelden sırası ile bir tane bağımsız değişkenin çıkarılması ile elde edilecek modellerin çoklu belirlilik katsayıları kullanılır. Modelde yer alan tüm bağımsız değişkenler sırası ile modelden çıkarılarak Regresyon modelleri tahmin edilir ve her model için çoklu belirlilik katsayıları elde edilir.

40 Theil-m Ölçüsü olarak hesaplanır. Burada bağımsız değişkenlerden biri çıkartıldıktan sonra bağımlı değişken ile diğer bağımsız değişkenlerin regresyonu sonucunda tahmin edilen çoklu belirlilik katsayısını ifade eder. Theil-m ölçüsü çoklu doğrusal bağlılığın önemli olup olmadığı hakkında bilgi vermediğinden, varyans büyütme faktörü ile şartlı sayı daha çok kullanılan ve daha yarar sağlayan kriterlerdir.

41 bağımsız değişkenler ilişkisizdir
Theil-m Ölçüsü “m” ölçüsü her regresyon için ayrı ayrı hesaplanmayan genel bir ölçüdür. m ölçüsü negatif çıkabileceği gibi çok yüksek pozitif değer de olabilmektedir. Hesaplanan m ölçüsü sıfıra eşitse bağımsız değişkenler ilişkisizdir. bağımsız değişkenler ilişkisizdir m = 0

42 Örnek: Slayt 11 de incelediğimiz model için Theil-m ölçüsünü uygulayalım. Yardımcı regresyon modellerini oluşturalım. m sıfıra yakın bir değer değildir, çoklu doğrusal bağlılık söz konusudur.

43 Çoklu Doğrusal Bağlantı Problemini Ortadan Kaldırma Yolları
1.Ön Bilgi Yöntemi Y = b1 + b2 X2 + b3 X3 +b4 X4+ u b3 = 0.2b2 Y = b1 + b2 X b2 X3 +b4 X4+ u Y = b1 + b2 (X X3 )+b4 X4+ u Y = b1 + b2 X*+ b4 X4+ u

44 Çoklu Doğrusal Bağlantı Problemini Ortadan Kaldırma Yolları
2.Kesit ve Zaman Serilerinin Birleştirilmesi lnY = b1 + b2 lnPtA + b3 lnIt +b4 lnPtB+ u lnY - b3 lnIt = b1 + b2 lnPtA +b4 lnPtB+ u lnY* = b1 + b2 lnPtA +b4 lnPtB+ u 3.Bazı Değişkenlerin Modelden Çıkarılması, 4.Değişkenleri Dönüştürme Yöntemi, 5.Ek veya Yeni Örnek Verisi Temin etme, 6.Diğer Yöntemler.

45 Km = Yaş (8.74) (88.11) Bakım = Yaş ( Yaş = -626, Yaş


"Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları ui’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin." indir ppt

Benzer bir sunumlar


Google Reklamları