Sunuyu indir
YayınlayanSi̇mge Özkul Değiştirilmiş 8 yıl önce
1
İSTATİSTİK II BAĞIMSIZLIK TESTLERİ VE İYİ UYUM TESTLERİ “ c2 Kİ- KARE TESTLERİ “
2
r x c Bağımsızlık Testleri
Bir populasyonun iki özelliğinin birbirinden bağımsız olup olmadığını test etmede kullanılır. Örneği meydana getiren bireyler iki farklı kritere göre sınıflanır. Örneğin bireylerin hem sigara içip içmemelerine hem de içki içip içmemelerine gör sınıflandırılması, İktisat bölümündeki öğrencilerin matematik ve istatistik derslerindeki başarı durumuna göre sınıflandırılması gibi.
3
İki Yönlü ( Kontenjans ) Tablolarda Beklenen Değerlerin Hesaplanması
Özellik A Özellik B 1 2 3 C Toplam G11 G12 G1c R1 G21 G22 G2c R2 G31 G32 G3c R3 .... ...... R Gr1 Gr2 Grc Rr C1 C2 C3 Cc N
4
Herhangi bir hücrenin beklenen değerin hesaplanmasında iki özelliğin var olması sebebiyle, o hücrenin bulunduğu satır ve sütun toplamlarının çarpımının örnek hacmine bölünmesiyle hesaplanır. i. inci satır , j. inci sütundaki bir gözlemin beklenen değeri, şeklinde bulunur. 1. satır , 2. sütundaki hücrenin beklenen değeri, şeklindedir.
5
H0 : Populasyonun iki özelliği birbirinden bağımsızdır
H0 : Populasyonun iki özelliği birbirinden bağımsızdır. ( aralarında ilişki yoktur. ) H1 : Populasyonun iki özelliği birbirinden bağımsız değildir.( aralarında ilişki vardır. ) Test İstatistiği: ise H0 red edilir.
6
Örnek: İzmir’in Buca ilçesinde yapılan bir anket çalışmasında kişilerin cinsiyetleri ile oy verdikleri parti arasında bir ilişki olup olmadığı araştırılmaktadır. Aşağıdaki tabloda anket sonucunda elde edilen bilgiler bulunmaktadır. Buca ilçesinde oturan kişilerin cinsiyetleri ile oy verdikleri parti arasında ilişki olup olmadığını a = 0,01 önem seviyesinde test ediniz. Cinsiyet Kadın Erkek Partiler A 100 150 B 200 C
7
Cinsiyet Kadın Erkek Toplam Partiler A 250 B 400 C 350 500 1000
H0 : Cinsiyet ile oy verilen parti birbirinden bağımsızdır. H1 : Cinsiyet ile oy verilen parti birbirinden bağımsız değildir. Cinsiyet Kadın Erkek Toplam Partiler A 250 B 400 C 350 500 1000
8
17,14 > 9,21 olduğundan dolayı H0 red edilir
17,14 > 9,21 olduğundan dolayı H0 red edilir. % 99 olasılıkla Buca ilçesindeki kişiler için oy verilen partiler ile cinsiyet arasında bir ilişki olduğu söylenebilir.
9
DAĞILIŞA UYUM TESTLERİ
Örnek verilerinden yola çıkarak populasyonun dağılımı hakkında ortaya atılan iddiayı test etmek için “Dağılışa Uyum Testleri” kullanılır. Örnek verileri gözlenen değerler olarak, örnek hacmi dikkate alınarak ilgili dağılışın olasılık değerlerinden yola çıkarak beklenen değerler (teorik frekanslar) hesaplanır.
10
Ho: Örnek verileri ilgili dağılışa uygundur.
Dağılışa Uyum Testlerinde de kullanılacak olan test istatistiği dağılışına uymaktadır. Örnekten elde edilen gözlenen değerler ile dağılıştan yola çıkarak hesaplanan beklenen değerler birbirine yakınsa hesaplanan değeri küçük çıkacak ve örnek verilerinin dağılışının iddia edilen dağılışa uygun olduğu sonucu ortaya çıkacaktır. Ho: Örnek verileri ilgili dağılışa uygundur. H1: Örnek verileri ilgili dağılışa uygun değildir. Dağılışa Uyum Testlerinde Kullanılacak Olan Test İstatistiği:
11
> Hesaplanan değeri ile tablodan bulunan
değeri karşılaştırılarak iddianın doğruluğu hakkında karar verilir. v = k - 1- g k : değeri bulunurken dikkate alınan grup sayısı g : İlgili dağılış için örnek verileri kullanılarak hesaplanan (tahmin edilen) parametre sayısı > ise H0 red edilir. H0 ‘ın red edilemediği durumlarda örnek verilerinin dağılışı parametresi bilinen veya örnekten tahmin edilen dağılışa uygun olduğu sonucuna varılır.
12
KESİKLİ ÜNİFORM(DÜZGÜN) DAĞILIŞ
Tanımlı olduğu değerleri eşit olasılıklar ile alan şans değişkenlerinin dağılışıdır. Kesikli üniform dağılışı gösteren bir şans değişkeni N farklı değeri eşit olasılıklar ile alıyorsa her bir değeri alma olasılığı 1/N’ e eşittir. Hilesiz bir zar atıldığında zarın yüzeylerinde bulunan 6 sayının zarın ön yüzünde gelmesinin olasılığı birbirine birbirine eşit ve 1/6 olacaktır.
13
İşe gelmemesi beklenen işçi sayısı(Bi)
Örnek: Büyük bir işletmede hafta içerisindeki 5 gün içerisindeki işe gelmeme sayılarının dağılışı araştırılmaktadır. Bu amaçla bir hafta boyunca her gün işe gelmeyen işçi sayıları kontrol edilerek not edilmiştir. Hafta içerisinde iş yerine gelmeyen işçi sayılarının dağılışının Üniform(Düzgün) Dağılışa uygun olup olmadığını % 5 hata payıyla test ediniz. Günler işe gelmeyen işçi sayısı(Gi) pi İşe gelmemesi beklenen işçi sayısı(Bi) Pazartesi 15 1/5 12 0,75 Salı 9 Çarşamba Perşembe 11 0,08 Cuma 16 1,33 toplam 60 1 3,66
14
olduğundan Ho red edilemez.
Ho: İlgili işletmedeki hafta içi günlerdeki işe gelmeyen işçi sayılarının dağılışı Üniform Dağılışına uygundur. H1: İlgili işletmedeki hafta içi günlerdeki işe gelmeyen işçi sayılarının dağılışı Üniform Dağılışına uygun değildir. v = k - 1- g = =4 Üniform Dağılışında tahmin edilen parametre sayısı 0’dır. olduğundan Ho red edilemez. İlgili işletmedeki hafta içi günlerdeki işe gelmeyen işçi sayılarının dağılışı Üniform Dağılışına uygun olduğu % 5 hata payıyla söylenebilir.
15
Örnek: Meyve suyu üreticisi bir firma ürettiği meyve sularını her birinde 20 şişe bulunmak üzere kutular halinde poşetlemektedir. İşletmenin deposundan 100 kutu seçilerek kutuların her birindeki hatalı şişelenmiş olan meyve suları sayılarak kayıt edilmiştir. Aşağıdaki tabloda kutuların sayısı ve içerisindeki hatalı bulunan şişe sayıları verilmiştir. a) Toplam kaç şişe kontrol edilmiştir? b) Toplam kaç hatalı şişe bulunmuştur? c) Örnekteki hatalı şişelerin oranını nedir? d) Kutuların içerisindeki bulunan hatalı meyve sularının sayılarının Binom Dağılışına uygun olup olmadığını % 5 hata payıyla test ediniz.
16
Toplam 100 kutu kontrol edilmiştir
Toplam 100 kutu kontrol edilmiştir. Her bir kutu içerisinde 20 şişe meyve suyu bulunduğuna göre toplam 2000 adet şişe kontrol edilmiştir. b) c) d) Ho: Kutularda bulunan hatalı şişelerin sayısı n=20 olan Binom Dağılışına uygundur. H1: Kutularda bulunan hatalı şişelerin sayısı n=20 olan Binom Dağılışına uygun değildir.
17
Beklenen Kutu Sayısı (Bi)
Hatalı Şişe Sayısı 1 2 3 4 5 ve daha fazla Kutu Sayısı (Gi) 48 25 15 8 pi 0,3585 0,3774 0,1887 0,0596 0,0133 0,0025 Beklenen Kutu Sayısı (Bi) 35,85 37,74 18,87 5,96 1,33 0,25 (Ki-Kare) Parametrik Olmayan Testler’de herhangi bir hücrenin veya grubun beklenen değer 5’ten küçük ise kendisine en yakın olan hücre veya grup ile birleştirilir. Bu işleme herhangi bir hücre veya grup içerisinde 5’ten küçük bir beklenen değer ifadesi kalmayıncaya kadar devam edilir.
18
Beklenen Kutu Sayısı (Bi)
Hatalı Şişe Sayısı 1 2 3 ve daha fazla Kutu Sayısı (Gi) 48 25 15 12 Beklenen Kutu Sayısı (Bi) 35,85 37,74 18,87 7,54 Binom Dağılışında parametre sayısı 2 (n,p) olmasına rağmen soruda tahmin edilen parametre sayısı 1 (p) ‘dir olduğundan Ho red edilir. Kutularda bulunan meyve sularının içerisinde hatalı şişelenenlerinin sayısının n = 20 olan Binom Dağılışına uygun olmadığı % 5 hata payıyla söylenebilir.
19
Örnek: Bir havaalanında uçuşlar kalkış zamanına göre zamanında ve gecikmeli olarak iki şekilde sınıflandırılmıştır. Aşağıdaki tabloda 1 saatlik süre içerisindeki gecikmeli gerçekleşen uçuşların sayıları ifade edilmiştir. a) Bir saatlik süre içerisinde ortalama kaç adet gecikmeli uçuş yapılmaktadır ? b) Bir saatlik süre içerisindeki gerçekleşen gecikmeli uçuş sayılarının Poisson Dağılışına uygun olup olamadığını % 5 hata payıyla test ediniz?
20
a) b) Ho: Bir saatlik süre içerisindeki zamanında gerçekleşmeyen uçuşların sayısı Poisson Dağılışına uygundur. Ha: Bir saatlik süre içerisindeki zamanında gerçekleşmeyen uçuşların sayısı Poisson Dağılışına uygun değildir.
21
olduğundan Ho red edilemez.
Poisson Dağılışında parametre sayısı 1 (l)’dir. olduğundan Ho red edilemez. Havaalanında 1 saatlik süre içerisinde gerçekleşen gecikmeli uçuş sayılarının Poisson Dağılımın uygun olduğu % 5 hata payıyla söylenebilir.
22
Normal Dağılışa Uyum Testi Örneği:
Kimyasal bir madde üreten bir firma günlük satışlarının ( 1000 galon) normal dağılışa uygun olup olmadığını araştırmak istemektedir. Bu amaçla 200 gün boyunca satılan miktarlar kayıt edilerek aşağıdaki sınıflanmış veri seti elde edilmiştir. Buna göre % 5 hata payıyla satışların normal dağılışa uygun olup olmadığını test ediniz. Satışlar (1000 galon) Satılan Gün Sayısı x < 34,0 34,0 ≤ x < 35,5 13 35,5 ≤ x < 37,0 20 37,0 ≤ x < 38,5 35 38,5 ≤ x < 40,0 43 40,0 ≤ x < 41,5 51 41,5 ≤ x < 43,0 27 43,0 ≤ x < 44,5 10 44,5 ≤ x <46,0 1 46,0 ≤ x Toplam 200
23
Uyumu araştırılacak dağılış olan normal dağılışın parametreleri ifade edilmediğinden verilen örnekten yola çıkılarak, örnek istatistikleri tahmin edilir. Her bir sınıfa ait olan olasılık değerleri sınıflanmış verilerin aralığına düşmesi olasılığına karşılık gelir. Anakütle dağılışının uygun olduğu varsayılan normal dağılışla ilişkin olasılık hesaplamaları standart normal dağılışa ( z ) dönüştürme yoluyla hesaplanır.
24
Hesaplanan bu olasılıklar toplam örnek hacmiyle çarpılarak beklenen değerler elde edilir.
B1 = np1 = 0,0082 * 200 = 1,64 B6 = np6 = 0,2257 * 200 = 54 Ho: Satışlar normal dağılışa uygundur. H1: Satışlar normal dağılışa uygun değildir.
25
G1=13, B1= 7,18 Satışlar Gi pi Bi = npi Gi- Bi (Gi- Bi)2/Bi x < 34,0 0,0082 1,64 5,82 4,7176 34,0 ≤ x < 35,5 13 0,0227 5,54 35,5 ≤ x < 37,0 20 0,0792 15,84 4,16 1,0925 37,0 ≤ x < 38,5 35 0,1592 31,84 3,16 0,3136 38,5 ≤ x < 40,0 43 0,2257 45,14 -2,14 0,1015 40,0 ≤ x < 41,5 51 5,86 0,7607 41,5 ≤ x < 43,0 27 -4,84 0,7357 43,0 ≤ x < 44,5 10 -5,84 2,1531 44,5 ≤ x <46,0 1 0,0277 -6,18 5,3193 46,0 ≤ x G8=1, B8= 6,18
26
olduğundan Ho red edilir.
v = k - 1- g = =5 olduğundan Ho red edilir. Firmanın günlük satışlarının normal dağılışa uygun olmadığı % 5 hata payıyla söylenebilir.
Benzer bir sunumlar
© 2024 SlidePlayer.biz.tr Inc.
All rights reserved.