Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

(section 4) Bölüm 4 Konik Dişli Çark Mekanizmaları Makina Elemanları II İ.T.Ü. Makine Fakültesi (Bevel Gears)

Benzer bir sunumlar


... konulu sunumlar: "(section 4) Bölüm 4 Konik Dişli Çark Mekanizmaları Makina Elemanları II İ.T.Ü. Makine Fakültesi (Bevel Gears)"— Sunum transkripti:

1 (section 4) Bölüm 4 Konik Dişli Çark Mekanizmaları Makina Elemanları II İ.T.Ü. Makine Fakültesi (Bevel Gears)

2 Konik Dişli Çark Mekanizmaları (Bevel Gears)

3 HaftaDERS PLANI - Konular 1Dişli çark kinematiği; dişli ana kanunu, kayma hızı, eş profilin bulunması, takım dişli şartı 2Dişli çark kinematiği; evolvent profilli dişli çarklar 3Dişli çark kinematiği; kavrama oranı, alttan kesme, sınır diş sayısı, diş kalınlığı 4Tashihli dişli çarklar 5Düz alın dişli çarkların hesabı 6 7Helisel alın dişli çarkların hesabı ARA SINAV 1 8Konik dişli çarkların hesabı; düz konik dişli çarklar 9Konik dişli çarkların hesabı; helisel konik dişli çarklar 10Spiral dişli çarkların hesabı 11Sonsuz vida mekanizmalarının hesabı 12Kayış-kasnak mekanizmaları; teorik esaslar, düz kayışların boyutlandırılması ARA SINAV 2 13Kayış-kasnak mekanizmaları: V- kayışları, dişli kayışlar 14Zincir mekanizmaları Başarı Değerlendirme : Ara sınavlar2 Adet %20 Kısa Sınavlar4 Adet%10 Projeler2 Adet%30 Final Sınavı1 Adet%40

4 Dişli Çark Mekanizmaları Düz dişliler : iç ve dış dişli (Spur gears external contact Internal contact) Parallel helical gears Herringbone gears (or double-helical gears) Çubuk dişli ve pinyon (Rack and pinion) Düz konik dişli (Straight Bevel gears) (Spiral bevel gears) Spiral dişliler (Crossed helical gears) Hypoid gears Sonsuz vida ve dişli çark (worm and worm gear)

5 Ağaç dişliler Dimensioning Wooden Gears - continued Düz İç planet Konik

6 Dişli Çark mekanizmaları dişlerin birbirini kavraması sayesinde, dönme hareketini ve döndürme momentini şekil bağı ile mecburi hareketli olarak ileten elemanlardır. Paralel, kesişen veya aykırı eksenlerde farklı dişli çark mekanizmaları kullanılır.

7 Konik Dişli Çark Mekanizmaları düz konik dişli

8 Konik Dişli Çark Mekanizmaları düz konik dişli

9 konik diferansiyel doğrusal (lineer) diferansiyel

10 The differential has three jobs: To aim the engine power at the wheels To act as the final gear reduction in the vehicle, slowing the rotational speed of the transmission one final time before it hits the wheels To transmit the power to the wheels while allowing them to rotate at different speeds (This is the one that earned the differential its name.)

11 Why You Need a Differential Car wheels spin at different speeds, especially when turning. You can see from the animation below that each wheel travels a different distance through the turn, and that the inside wheels travel a shorter distance than the outside wheels.

12 Why You Need a Differential Since speed is equal to the distance traveled divided by the time it takes to go that distance, the wheels that travel a shorter distance travel at a lower speed. Also note that the front wheels travel a different distance than the rear wheels.

13 Why You Need a Differential For the non-driven wheels on your car -- the front wheels on a rear-wheel drive car, the back wheels on a front-wheel drive car -- this is not an issue. There is no connection between them, so they spin independently. But the driven wheels are linked together so that a single engine and transmission can turn both wheels.

14 Why You Need a Differential If your car did not have a differential, the wheels would have to be locked together, forced to spin at the same speed. This would make turning difficult and hard on your car: For the car to be able to turn, one tire would have to slip. With modern tires and concrete roads, a great deal of force is required to make a tire slip. That force would have to be transmitted through the axle from one wheel to another, putting a heavy strain on the axle components.

15 What is a Differential? The differential is a device that splits the engine torque two ways, allowing each output to spin at a different speed.

16 What is a Differential? The differential is found on all modern cars and trucks, and also in many all-wheel-drive (full- time four-wheel-drive) vehicles. These all-wheel- drive vehicles need a differential between each set of drive wheels, and they need one between the front and the back wheels as well, because the front wheels travel a different distance through a turn than the rear wheels.

17 What is a Differential? Part-time four-wheel-drive systems don't have a differential between the front and rear wheels

18 What is a Differential? Part-time four-wheel-drive systems don't have a differential between the front and rear wheels; instead, they are locked together so that the front and rear wheels have to turn at the same average speed. This is why these vehicles are hard to turn on concrete when the four-wheel- drive system is engaged.

19 Spinning at Different Speeds We will start with the simplest type of differential, called an open differential. First we'll need to explore some terminology: The image below labels the components of an open differential.

20 What is a Differential? When a car is driving straight down the road, both drive wheels are spinning at the same speed. The input pinion is turning the ring gear and cage, and none of the pinions within the cage are rotating -- both side gears are effectively locked to the cage.

21 What is a Differential?

22

23

24

25

26

27

28

29

30 Note that the input pinion is a smaller gear than the ring gear; this is the last gear reduction in the car. You may have heard terms like rear axle ratio or final drive ratio. These refer to the gear ratio in the differential. If the final drive ratio is 4.10, then the ring gear has 4.10 times as many teeth as the input pinion gear. See How Gears Work for more information on gear ratios. When a car makes a turn, the wheels must spin at different speeds.

31 What is a Differential?

32 In the figure above, you can see that the pinions in the cage start to spin as the car begins to turn, allowing the wheels to move at different speeds. The inside wheel spins slower than the cage, while the outside wheel spins faster.

33 How Four-Wheel Drive Works by Karim Nice There are almost as many different types of four-wheel-drive systems as there are four- wheel-drive vehicles. It seems that every manufacturer has several different schemes for providing power to all of the wheels. The language used by the different carmakers can sometimes be a little confusing, so before we get started explaining how they work, let's clear up some terminology:

34 How Four-Wheel Drive Works Four-wheel drive - Usually, when carmakers say that a car has four-wheel drive, they are referring to a part-time system. For reasons we'll explore later in this article, these systems are meant only for use in low-traction conditions, such as off-road or on snow or ice.

35 How Four-Wheel Drive Works All-wheel drive - These systems are sometimes called full-time four-wheel drive. All-wheel-drive systems are designed to function on all types of surfaces, both on- and off-road, and most of them cannot be switched off.

36 How Four-Wheel Drive Works Part-time and full-time four-wheel-drive systems can be evaluated using the same criteria. The best system will send exactly the right amount of torque to each wheel, which is the maximum torque that won't cause that tire to slip.

37 How Four-Wheel Drive Works

38 In this article, we'll explain the fundamentals of four-wheel drive, starting with some background on traction, and look at the components that make up a four-wheel-drive system. Then we'll take a look at a couple of different systems, including the one found on the AM General Hummer.

39 How Four-Wheel Drive Works The Basics: Torque We need to know a little about torque, traction and wheel slip before we can understand the different four-wheel-drive systems found on cars.

40 How Four-Wheel Drive Works Torque Torque is the twisting force that the engine produces. The torque from the engine is what moves your car. The various gears in the transmission and differential multiply the torque and split it up between the wheels. More torque can be sent to the wheels in first gear than in fifth gear because first gear has a larger gear- ratio by which to multiply the torque.

41 How Four-Wheel Drive Works x

42 x

43 x

44 x

45 konik dişlideki kuvvetler

46 Konik Dişli Çark Mekanizmaları spiral konik dişli hipoid konik dişli Düz konik dişli

47 Konik Helisel Dişli Çark Mekanizmaları

48 Konik Dişli Çark Mekanizmaları taç dişli (crown gear)

49

50

51

52 Hypoid gears

53

54

55 Eloid Dişli

56

57 Yuvarlanma konisi Yuvarlanma mekanizmaları içinde eksenlerin kesişmesi iki konik eleman ile sağlanır. Taksimata isabet eden koniye yuvarlanma konisi adı verilir.

58 Yuvarlanma Konileri

59 Taksimat konisi açısı Taksimat konisi açısı (çark ekseni ile taksimat konisinin yan yüzeyi arasındaki açı) (δ 1 ) ve (δ 2 ) olarak belirtilir. Toplamları, Sıfır ve V-Sıfır Mekanizmalarında, eksen açısı (δ A ) 'dır. (Çark eksenlerinin kesişme açısı)

60 Eksen açısı (δ A ) Taksimat daireleri (çark eksenlerine dik kesitlerdeki daireler) ve Burada m ’nin DIN 780 'e göre norm modül olması gerekir.

61 Taksimat konisi Taksimat konisi uzunluğu R a Çevrim oranı

62 Taksimat konilerinin açıları Eksen açısı (δ A ) ve diş sayıları z 1, z 2 (yani i=z 2 /z 1 ) ile taksimat konilerinin açıları çıkarılabilir.

63 Taksimat konilerinin açıları Ortaya çıkan özel hal δ A = 90° için

64 Yukarıdaki ifadeler diş formundan bağımsızdır. Taksimat daireleri (R a ) yarıçaplı bir kürenin yüzeyinde bulunmaktadır.

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88 Spiral Dişli Çark

89 Dişli Çark mekanizmaları dişlerin birbirini kavraması sayesinde, dönme hareketini ve döndürme momentini şekil bağı ile mecburi hareketli olarak ileten elemanlardır. Paralel, kesişen veya aykırı eksenlerde farklı dişli çark mekanizmaları kullanılır.

90

91 Konik dişli mekanizmaları

92

93 Spiral Dişli Çark Mekanizmaları

94 Spiral dişli eksen açıları

95 Paralel Helisel Dişliler Parallel helical gears

96 Helisel ve Spiral Dişliler

97 Spiral dişliler (Crossed helical gears) Sonsuz vida ve dişli çark (worm gear)

98 Sonsuz Vida Mekanizmaları

99 Sonsuz vida

100

101 Nomenclature of a single enveloping worm gearset.

102

103 Worm Gear Mechanism

104 Worm Gear

105 hobbing a worm gear

106 helisel dişli çark mekanizmalarında kuvvetler kesme kuvvet sebebiyle eğilme moment diyagramı radyal kuvvetler sebebiyle eğilme moment diyagramı

107 Thrust Shaft

108

109 Thrust Bearing

110

111

112 Ders Kitabı (Notu) Ders Notları mevcut Diğer Kaynaklar Joseph Edward Shigley, Mechanical Engineering Design, McGraw-Hill International Editions, First Metric Edition, 1986. Tochtermann/Bodenstein, Konstruktionselemente des Machinenbaues 1,2, Springer-Verlag Juvinall, R.J. and Marshek, K.M., Fundamentals of Machine Component Design, 3rd Edition, John Wiley & Sons, 2000. Deutschman, A.D., Wilson,C.E and Michels, W.J., Machine Design, Prentice Hall, 1996. Erdman, A.G. and Sandor, G.N., Mechanism Design Analysis and Synthesis, Vol. 1, 3rd Edition, Prentice Hall, 1997. Shigley, J.E., Uicker, J.J., Theory of Machines and Mechanisms, Second Edition, McGraw-Hill, 1995.


"(section 4) Bölüm 4 Konik Dişli Çark Mekanizmaları Makina Elemanları II İ.T.Ü. Makine Fakültesi (Bevel Gears)" indir ppt

Benzer bir sunumlar


Google Reklamları