Sunuyu indir
1
İSTATİSTİKTE TAHMİN ve HİPOTEZ TESTLERİ İSTATİSTİK
Doç. Dr. Şakir GÖRMÜŞ SAÜ
2
Öğrenme Hedefleri Bu konuyu çalıştıktan sonra:
Örneklemden yola çıkarak ana kütle parametrelerini belli güven aralıklarında hesaplayabilir. İstatistikte hipotez tezlerini kurabilir. İstatistikte hipotez tezlerinin doğruluğunu test edebilir.
3
İçindekiler 1. İSTATİSTİK TAMNİNİ 1.1. Güven Aralıkları
1.2. Örnek Ortalamalarının Dağılımı 1.3. Ana Kütle Ortalamasının Tahmini 2. HİPOTEZ TESTİ 2.1. Hipotez Testinin Adımları Hipotezlerin kurulması Güven Sınırlarının Belirlenmesi Hipotez Testinin Sınanması Hipotez Testinin Sınanması Örnekleri
4
Örneklemden yola çıkarak ana kütle parametrelerini belli güven aralıklarında hesaplayabilir.
İSTATİSTİK TAHMİNİ 1. İSTATİSTİK TAHMİNİ Ana kütledeki birimlerin tamamını inceleyerek ana kütle hakkında bilgi sahibi olmanın zor, hatta bazen imkânsız olması örnekleme yöntemlerine başvurmak için yeterli sebep sayılabilir. İstatistik tahmini ile ana kütleden alınan örnek veriler kullanılarak ana kütlenin parametreleri tahmin edilmeye çalışılır. İki tür Parametre tahmini vardır; 1. NOKTA TAHMİNİ: Parametreye en uygun bir istatistiğin tek sayısal değeridir. Örneğin, ana kütle ortalamasını tahmin etmek için örneklem ortalaması alınırsa, parametrenin nokta tahmin edicisi kullanılıyor denir. 2. ARALIK TAHMİNİ: Bilinmeyen ana kütle parametresinin belirli bir olasılıkla içinde bulunacağı rasgele alt ve üst sınırı belirlemektir.
5
Örneklemden yola çıkarak ana kütle parametrelerini belli güven aralıklarında hesaplayabilir.
İSTATİSTİK TAHMİNİ 1.1. Güven Aralıkları Ana kütle Ortalamasının Güven aralığı: Ana kütlenin tüm birimlerini incelemek olanaksızdır. Bu gibi durumda Ana kütlenin ortalaması hesaplanamaz. Ancak örneklemler yardımıyla ana kütlenin ortalaması ya da ana kütlenin ortalamasının içinde bulunduğu sınırlar, seçilen yanılma olasılığında tahmin edilir. Kitle ortalamasının içinde bulunduğu sınırlara “Ana kütlenin Ortalamasının Güven Aralığı ya da Güven Sınırları” adı verilir. Ana kütlenin varyansı 2’nin bilindiğinde Ana kütlenin ortalamasının Aralık Tahmini: Ana kütlenin varyansı 2’nin bilinmediğinde ana kütlenin ortalamasının Aralık Tahmini:
6
Örneklemden yola çıkarak ana kütle parametrelerini belli güven aralıklarında hesaplayabilir.
İSTATİSTİK TAHMİNİ Bu durumda ana kütle ortalaması için Güven Aralığı; 1.2. Örnek Ortalamalarının Dağılımı Örneklerin basit tesadüfî örnekleme yöntemine göre alındıklarını varsayarak, örnekler için örnekleme dağılımlarını görelim: Örnek ortalamaları ana kütle ortalaması etrafında normal bir dağılım gösterirler. Standart hata ise örnek ortalamaları normal dağılımının standart sapmasından başka bir şey değildir. Bu normal dağılımın ortalaması ile standart sapması arasındaki ilişkiden hareketle herhangi bir örnek ortalamasının belirli olasılık kademelerine göre bulunabileceği sınırlar tahmin edilebilir.
7
İSTATİSTİK TAHMİNİ Güven Sınırlarını belirleyebilir.
Şekil 1. Normal dağılan örnek ortalamalarının çeşitli standart hata sınırları µ-3σx µ-2σx µ-σx µ+σx µ+2σx µ+3σx Şekil 1 de görüleceği gibi, örnek ortalamalarının % 99.7 si ana kütle ortalamasından ± 3 σx standart hata sınırları arasında bulunur. Bunun gibi diğer olasılık kademeleri için de benzer açıklamalar yapılabilir. Buna göre, ana kütle ortalaması µ ve örnek ortalamaları standart hatası σx şeklinde gösterilecek olursa örnek ortalamaları şu şekilde hesaplanır:
8
İSTATİSTİK TAHMİNİ Güven Sınırlarını belirleyebilir.
1.3. Ana Kütle Ortalamasının Tahmini Örnek 1. Ürün ağırlıkları ile ilgili değişkenliğin σ = 5 gr. olduğu bilinmektedir. Örnekleme oranı %1 olacak şekilde alınan 100 birimlik (n) örneğin ortalaması 100 gr. ( 𝑋 bulunduğuna göre, ana kütledeki ürünlerin ortalama ağırlığını belirli olasılık kademelerine (güven aralığına) göre tahmin edelim: Buna göre örneklem standart hata; Çeşitli olasılık kademeleri için yığın ortalamasının tahmini ise aşağıda gösterildiği gibi hesaplanır:
9
İSTATİSTİK TAHMİNİ Güven Sınırlarını belirleyebilir.
Örnek kişi üzerinde yapılan bir araştırmada Türkiye’de insanların ortalama günde 8 dakika televizyon seyrettikleri ve ana kütlenin standart sapmasının 4 dakika olduğu bilindiğine göre % 95 güven aralığında ana kütle ortalamasını tahmin ediniz. İlk olarak örneklem standart sapması bulunur Yukarıdaki sonucu % 95 güven düzeyinde Türkiye’de insanlar günde 3.02 ile 4.98 dakika arasında televizyon seyretmektedir şeklinde yorumlayabiliriz.
10
HİPOTEZ TESTİ Hipotez testinin varsayımlarını bilir.
2. HİPOTEZ TESTİ "Hipotez", bir durum hakkında ileri sürülen bir varsayımdır. Buna göre, "istatistik hipotez", ana kütlenin durumu hakkında ileri sürülen bir varsayımdır. Burada bu hipotez daima yapılacak bir istatistik test sonucuna göre kabul veya reddedilecek şekilde formüle edilir. "İstatistik test" ise örnek istatistiklerini kullanarak bir hipotezin geçerli olup olmadığını ortaya koyma işlemidir. Hipotez testinde amaç, hareket tarzları belli bir fiili yapmak veya yapmamak olduğuna göre, böyle bir karara varabilmesi için karar sürecinin belirlenmesi gerekir. Bunun için önce hipotezlerin ortaya konması gerekir. İstatistikte Ho 'a sıfır hipotezi, Hı 'e de alternatif veya araştırma hipotezi denir.
11
HİPOTEZ TESTİ İstatistikte hipotez tezlerini kurabilir.
2.1. Hipotez Testinin Adımları Hipotezlerin kurulması Önce, hipotezlerin kurulur. Hipotezler, sıfır hipotezi ve araştırma (alternatif) hipotezi olmak üzere iki tanedir. Sıfır hipotezi, yığın parametresinin bilinen veya belirlenmiş değerini gösterir. Alternatif hipotez ise, araştırmayı yönlendiren yani kanıtlanmak istenen asıl hipotezdir. Hipotezler, biri red edildiğinde diğeri kabul edilecek şekilde düzenlenirler. Sıfır hipotezinde, ana kütle parametresinin belirli bir değere eşit olduğu ifade edilir. Alternatifinde ise kanıtlanacak duruma göre ana kütle parametresinin belirli bir değerden büyük, küçük ya da farklı olduğu ileri sürülür. "Ürünlerin ortalama ağırlığı 100 gr. dan farklıdır" şeklindeki araştırma hipotezi sıfır hipotezi ile birlikte şu şekilde kurulabilir: H0 : µ = 100 gr. H1 : µ ≠ 100 gr. "Ürünlerin ortalama ağırlığı 100 gr. dan hafiftir" şeklindeki bir hipotez şu şekilde kurulabilir: H0 : µ = 100 gr. H1 : µ < 100 gr.
12
İstatistikte hipotez tezlerini kurabilir.
HİPOTEZ TESTİ
13
HİPOTEZ TESTİ Güven Sınırlarını belirleyebilir.
Güven Sınırlarının Belirlenmesi Anlam düzeyi, önem seviyesi şeklinde de ifade edilebilir. Örnek ortalamaları yığın ortalaması etrafında normal dağılış gösterdiğinden, örnek ortalamalarının %95' i Z = ±1.96 sınırları arasında, %99' u ise Z = ±2.58 sınırları arasında kalıyor demektir. Güven sınırları dışında kalan alanlar ise anlam düzeyi olarak bilinir ve bunlar sırasıyla % 0.10, % 5 ve % 1 dir.
14
Güven Sınırlarını belirleyebilir.
HİPOTEZ TESTİ
15
İstatistikte hipotez tezlerinin doğruluğunu test edebilir.
HİPOTEZ TESTİ Hipotez Testinin Sınanması Bir hipotez kurulduktan sonra 2 aşamada test edilir. 1. Aşama: Örneklemden yola çıkılarak Zh degeri hesaplanır. 𝐙 𝐡 = 𝐗− µ 𝛔 𝐱 Aşama: Hesaplanan Zh değeri Zk değeri ile karşılaştırılır. Zh > Zk ise H0 hipotezi reddedilir ve alternatif hipotez kabul edilir.
16
2.1.4. Hipotez Testinin Sınanması Örnekleri
İstatistikte hipotez tezlerinin doğruluğunu test edebilir. HİPOTEZ TESTİ Hipotez Testinin Sınanması Örnekleri
17
İstatistikte hipotez tezlerinin doğruluğunu test edebilir.
HİPOTEZ TESTİ 2. Aşama: Hesaplanan Zh değeri Zk değeri ile karşılaştırılır. Zh ( -3.3) > Zk ( -2.58) oldugundan H0 hipotezi reddedilir ve alternatif hipotez kabul edilir. Yorum: Fırının ürettiği ekmeklerin ortalama ağırlığı 500 gramdan farklıdır. Not: Z değerlerini mutlak değerler olarak karşılaştırıyoruz
18
İstatistikte hipotez tezlerinin doğruluğunu test edebilir.
HİPOTEZ TESTİ Örnek 2: Ağrı kesici bir ilacın ortalama 60 dakikadan daha az bir sürede etkisini göstereceği olduğu iddia ediliyor. Rasgele seçilen hastalardan 64’üne ilgili ilaç veriliyor ve ortalama etki süresi 63 ve standart hatası 12 bulunuyor. =0.05 anlamlılık düzeyinde (%95 güven aralığı) iddianın doğruluğunu test ediniz. Hipotez testini kuralım. H0 : µ ≤ 60 dakika H1 : µ > 60 dakika 1. Aşama: Örneklemden yola çıkılarak Zh değeri hesaplanır. 𝐙 𝐡 = 𝐗− µ 𝛔 𝐱 = 𝟔𝟑− 𝟔𝟎 𝟏𝟐 𝟖 = 𝟑 𝟐 =𝟏.𝟓
19
İstatistikte hipotez tezlerinin doğruluğunu test edebilir.
HİPOTEZ TESTİ 2. Aşama: Hesaplanan Zh değeri Zk değeri ile karşılaştırılır. Zh ( 1.5) > Zk ( 1.65) olduğundan H0 hipotezi reddedilemez. Yorum: %95 güven düzeyinde ilaç ağrıyı en geç 60 dakika içinde geçirmektedir
20
Değerlendirme Soruları
21
Değerlendirme Soruları
22
Değerlendirme Soruları
23
Değerlendirme Soruları
24
Değerlendirme Soruları
2. Aşama: Hesaplanan Zh değeri Zk değeri ile karşılaştırılır. Zh ( 2.5) > Zk ( 1.96) oldugundan H0 hipotezi reddedilir ve alternatif hipotez kabul edilir. Yorum: Paketlerin ağırlığı 500 gramdan farklıdır.
Benzer bir sunumlar
© 2024 SlidePlayer.biz.tr Inc.
All rights reserved.