RCS PREDICTION and REDUCTION TECHNIQUES Doğuş University  ECE Department 18.06.2003 Doğuş University  ECE Department 18.06.2003 ÇAĞATAY ULUIŞIK B52 F117.

Slides:



Advertisements
Benzer bir sunumlar
A Deep Approach to Turkish Teaching and Learning
Advertisements

Zamana Bağımlı Olmayan Doğrusal (LTI) Sistemlerin Frekans Tepkileri
İletişim Lab. Deney 2 Filtre Tasarımı ve Özellikleri
İNCE CİDARLI TÜPLERİN BURULMASI THIN-WALLED TUBES
Logical Design Farid Rajabli.
Hareket halindeki insanlara ulaşın.Mobil Arama Ağı Reklamları Reach customers with Mobile Search Network.
/ 141 Yrd. Doç. Dr. Turan SET Atatürk University Medical Faculty, Erzurum QUALİTY CIRCLES
COMPANY Veritabanı Örneği (Gereksinimler)
Kampanyanızı optimize edin. Görüntülü Reklam Kampanyası Optimize Edici'yi Kullanma Display Ads Campaign Optimizer. Let Google technology manage your diplay.
ISE Senior Project Fall 2015.
Key Terms from the Chapters. Chapter -1 Statistics, Data, and Statistical Thinking Fundemantal Elements of Statistics Statistics: EN: Statistics is the.
Veri Yapıları ve Algoritmalar
BM-305 Mikrodenetleyiciler Güz 2015 (6. Sunu) (Yrd. Doç. Dr. Deniz Dal)
Database for APED Büşra Bilgili | Emirhan Aydoğan | Meryem Şentürk | M. Arda Aydın COMPE 341.
ULUBATLI HASAN PRIMARY SCHOOL (ULUBATLI HASAN İLKÖĞRETİM OKULU) BERGAMA, İZMİR TURKEY.
What is lost in translation?
Nasa programs for students.
Improvement to Rankine cycle
Practice your writing skills
This is beak. There are feet. There are wings. There are eyes. This is tongue.
BUGRAHAN PRESENT. Eagle is a common name for many large birds of prey of the family Accipitridae; it belongs to several groups of genera that are not.
DISCUSSION
CHILD PORNOGRAPHY IŞIK ÜNİVERSİTESİ
FLEXIBILITY AND JOB CREATION POLICIES BARIŞ KILIÇ.
Doğrusal Programlama Linear Programming-2
İSTATİSTİK II Hipotez Testleri 1.
Equilibrium, Gravitation and Periodic Motion
İSTATİSTİK-II Korelasyon ve Regresyon.
BM-305 Mikrodenetleyiciler Güz 2016 (7. Sunu)
Geriatrist gözüyle yoğun bakım
İleri Muhasebe ve Denetim Düzenleme Programı Modül 24: UFRS’lerin Bankacılık Sektöründe Kabul Edilmesi (Bölüm II) 2. Denetçi Perspektifi Reinhard Klemmer,
RETROSPECTIVE EVALUATION OF THE TREATMENT APPROACHES OF ECTOPİC PREGNANCIES ACCORDING TO GESTATIONAL WEEK Op. Dr. Nurullah PEKER.
BİLİMSEL ÇALIŞMA BASAMAKLARI SCIENTIFIC WORKING STEPS MHD BASHAR ALREFAEI Y
LEFM and EPFM LEFM In LEFM, the crack tip stress and displacement field can be uniquely characterized by K, the stress intensity factor. It is neither.
Banach Sabit Nokta Teoremi (Büzülme Teoremi)
Transforming Signals in Time-Domain into Signals in Frequency-Domain
CHAPTER OUTLINE 7 The Production Process: The Behavior of Profit-Maximizing Firms The Behavior of Profit-MaximizingFirms Profits and Economic Costs Short-Run.
SPAIN. STATE NAME: Kingdom of Spain PRESIDENT: Madrid AREA: km2 POPULATION: OFFICIAL LANGUAGE: Spanish RELIGION: Christianity CURRENCY:
German shepherd dog. These dogs are said to be intelligent before they say.
Pop Art Pop Art was inspired by popular culture of the 1950s and 60s Arts were inspired by magazines, pop music, television, films, and advertisements.
Hibrit Sistemler ve Hibrit Sistem Ekonomisi
Ac POWER ANALYSIS Part III..
RA-Relational Algebra
FINLAND EDUCATION SYSTEM I am talking about the Finnish education system today.
Louis Pasteur ( ) By: Areli Valencia. Pasteur.
 İskilip Castle: It is built on a rocky side of three hundred meters high. There is a south- facing gate, a dungeon on the left side of the castle. There.
IBM Bulut Servisleri ile Yeni Çözümler Oluşturun L
WEEK 12 Dynamics of Machinery
İSTATİSTİK II Hipotez Testleri 1.
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
Relations between angles and sides.. Examples and meaning Larger angles longer side If two angles in a tringle have unequal measures then the sides opposite.
BİLL GATES Şule Eslem ÖZTÜRK NUN OKULLARI Prep-A.
Multipoint programlama
NİŞANTAŞI ÜNİVERSİTESİ
DREAMHOUSE TY TLG DREAM HOUSE TY TLG DREAM……… YOU CAN TOUCH, IF YOU DREAM………
Feminism, unlike the idea of ​​ mankind, is a trend that is prioritized to bring gender inequality to the agenda. The notion of feminism, which is not.
(Dr. Öğr. Üyesi Deniz Dal)
Imagine that you are a teacher and you are taking your 20 students to England for the summer school.
THE MYSTERIOUS ISLAND JULES VERNE. INFORMATION ABOUT THE BOOK  Name of the book: The Mysterious Island  Author: Jules Verne  Type: Adventure  Number.
Karabük Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü
SUBJECT NAME Prepeared by Write the names of group members here
People with an entrepreneurial mindset are always brave.
pnpn Yapılı Elektronik Elemanlar ve Diğerleri
Signal Processing Applications in Mechatronics
Bilgisayar Grafiğine Giriş CS 351. Bilgisayar Grafiği Nedir? ● Geometrik şekillerin Üretilmesi, İşlenmesi ve Depolamasıdır. ● Cisimlerin bilgisayar ekranında.
Sunum transkripti:

RCS PREDICTION and REDUCTION TECHNIQUES Doğuş University  ECE Department Doğuş University  ECE Department ÇAĞATAY ULUIŞIK B52 F117

RCS is defined as : and given by : Radar Cross Section (RCS) The absolute magnitude of RCS is given in terms of area, typically in units of square meters (m 2 ) Relative magnitude is given in terms of dBm 2, where RCS is the area a target would have to occupy to produce the amount of reflected power (echo) that is detected back at the radar.

Radar Cross Section (RCS)

RCS frequency regions :  Rayleigh Region (low frequencies) Target dimensions are much less than the radar wavelength (l<< ). In this region RCS is proportional with the fourth power of the frequency  Resonance Region (medium frequencies) Target dimensions and the radar wavelength are in the same order (l  ).  Optical Region (high frequencies) Target dimensions are very large compared to the radar wavelength (l>> ). In this region RCS is roughly the same size as the real area of target.

Radar Cross Section (RCS) RCS of a target is dependent on several factors, such as,  Orientation (Viewing direction)  Radar frequency  Polarization of the radar signal (vertical, horizontal, circular)  Physical size of the target  Geometry of the target  Composition of the target (Surface Quality) When RCS of a target is of interest these parameters should be given :  Angle of incidence  Angle of scatter  Incident field polarization  Scattered field polarization  Frequency and target geometry  RCS value

Radar Cross Section (RCS) Cross Section of Real Targets The cross section of complex targets are complicated functions of the viewing aspect, frequency and polarisation. The most accurate method of determining the cross section of a target is by measurement. However it is often impractical to measure this over all aspect angles in azimuth and elevation. Target cross section is often related to their physical size, but under certain circumstances it may be much larger. For example a corner reflector has an extremely large target cross section in relation to its size, whereas a B2-B stealth bomber has a very small cross section.The RCS of a B26 bomber exceeds 35 dBm 2 (3100m 2 ) from certain aspect angles. In contrast, the RCS of the B2 stealth bomber is about – 40dBm 2. Because it is made up of reflections from a large number of scatterers, even very small changes in the aspect angle of the target results in relative phase changes between the scatterers and an altered cross section. Experimental cross section of the B-26 two engine bomber at 10 cm wavelength as a function of azimuth angle Experimental cross section of a Toyota pickup truck at 35 GHz as a function of azimuth angle

Radar Cross Section (RCS)

RCS PREDICTION Numerical Techniques FDTD : Finite Difference Time Domain (direct discretization of Maxwell’s Equation ) TLM : Transmission Line Matrix (3-dimensional transmission line matrix representation) MoM : Method of Moments (requires derivation of Green’s function) PE : Parabolic Equation (one-way axial propagation simulation) FE : Finite Element (requires discretization in terms of patches) Analytical Asymptotic Methods (High Frequency) GO : Geometric Optics (reflection + refraction) GTD : Geometric Theory of Diffraction (reflection + refraction + diffraction) PO : Physical Optics (reflection + refraction) PTD : Physical Theory of Diffraction (reflection + refraction+ diffraction)

RCS PREDICTION Time Domain Methods FDTD : Finite Difference Time Domain (Field Theory) TLM : Transmission Line Matrix (Circuit Theory) Frequency Domain Methods MoM : Method of Moments PE : Parabolic Equation FE : Finite Element GO : Geometric Optics GTD : Geometric Theory of Diffraction PO : Physical Optics PTD : Physical Theory of Diffraction

RCS PREDICTION SCATTERING  Reflection  Refraction  Diffraction  Tip Diffraction  Edge Diffraction GO, PO GTD, PTD Reflection Edge DiffractionTip Diffraction

RCS PREDICTION Geometric Optics Method Radar Cross Sections of Simple Canonical Objects

RCS PREDICTION MoM using NEC x y z x y z x y z

RCS PREDICTION MoM using NEC

RCS PREDICTION FDTD using F-SNRCS and F-BIRCS SNRCS.INP or BIRCS.INP Monostatic RCSBistatic RCS

SINGLE – RCS of a PLATE SNRCS.INP x y z E SNRCS.INP x y z E SNRCS.INP x y z E SNRCS.INP x y z E  i =  s =90   i =  s =0     i =  s =90   i =  s =0     i =  s =90   i =  s =0     i =  s =90   i =  s =0   

SINGLE – RCS of a PLATE  i =  s =90   i =  s =90     i =  s =90   i =  s =90     i =  s =90   i =  s =90     i =  s =90   i =  s =0    SNRCS.INP x y z E : FDTD : GO : NEC  10 4 SNRCS.INP x y z E SNRCS.INP x y z E SNRCS.INP x y z E

F-SNRCSNEC En uzun kenar:l=10 cm Segment uzunluğu  =0.25 cm  =0.5 cm Minimum dalga boyu min =2.5 cm min =5 cm Maksimum frekansf max =12 GHzf max =6 GHz  i =  s =90   i =  s =90    SNRCS.INP x y z E : FDTD : GO : NEC  10 4 SINGLE – RCS of a PLATE SNRCS.INP x y z E  i =  s =90   i =  s =90    SNRCS.INP x y z E Geometric Optics

SINGLE – RCS of a 4 Element Vertical Array F-SNRCSNEC En uzun kenar:l=40 cm Segment uzunluğu  =1 cm Minimum dalga boyu min =10 cm Maksimum frekansf max =3 GHz  i =  s =90   i =  s =0     i =  s =90   i =  s =30    x y z E SNRCS.INP : FDTD : NEC SNRCS.INP x y z E : FDTD : NEC x y z E

SINGLE – RCS of a Square Dihedral  i =  s =45   i =  s =90    Geometric Optics F-SNRCSNEC En uzun kenar:l=40 cm Segment uzunluğu  =1cm  =2cm Minimum dalga boyu min=10 cm min=20 cm Maksimum frekansfmax =3 GHzfmax=1.5 GHz SNRCS.INP x y z E : FDTD : GO : NEC : FDTD : GO : NEC x y z E SNRCS.INP x y z E

SINGLE – RCS of a Square Trihedral  i =  s =45   i =  s =45    Geometric Optics F-SNRCSNEC 635 segments En uzun kenar:l=40 cm Segment uzunluğu  =1cm  =4 cm Minimum dalga boyu min =10 cm min =40 cm Maksimum frekansf max =3 GHzf max =750 MHz x y z E : FDTD : GO : NEC

SINGLE – RCS of a Square Trihedral  i =  s =45   i =  s =45    Geometric Optics F-SNRCSNEC 2640 segments En uzun kenar:l=40 cm Segment uzunluğu  =1cm  =2 cm Minimum dalga boyu min =10 cm min =20 cm Maksimum frekansf max =3 GHzf max =1.5 GHz x y z E : FDTD : GO : NEC

SINGLE – RCS of a Rectangular Prism x y z E  i =  s =90   i =  s =0    SNRCS.INP : FDTD : GO : NEC Geometric Optics

BISTATIC – RCS of a Plate BIRCS BIRCS.INP l= f =3 GHz  i =90   i =90   s =90   s =0:1:360 Eta=0  (  polar.) x y z E BIRCSNEC En uzun kenar:l=10 cm Segment uzunluğu  =0.25 cm  =0.5 cm Minimum dalga boyu min =2.5 cm min =5 cm Maksimum frekansf max =12 GHzf max =6 GHz Geometric Optics NEC 0 dB   8.97 dB : FDTD : PO 30 dB   8.71 dB 30 dB   9.01 dB

BISTATIC – RCS of a Plate BIRCS BIRCS.INP l=2 f =6 GHz  i =90   i =90   s =90   s =0:1:360 Eta=0  (  polar.) Geometric Optics NEC 0 dB   2.7 dB : FDTD : PO 30 dB   3.14 dB 30 dB   2.99 dB x y z E Physic Optics :  : RCS as a function of angle (m 2 ) a, b : Sides of the plate (m)

BISTATIC – RCS of a Plate BIRCS BIRCS.INP l= f =3 GHz  i =90   i =60   s =90   s =0:1:360 Eta=0  (  polar.) y x z E BIRCSNEC En uzun kenar:l=10 cm Segment uzunluğu  =0.25 cm  =0.5 cm Minimum dalga boyu min =2.5 cm min =5 cm Maksimum frekansf max =12 GHzf max =6 GHz NEC 0 dB   9.8 dB : FDTD : PO 30 dB   9.64 dB 30 dB   dB

BISTATIC – RCS of a Plate BIRCS BIRCS.INP l=2 f =6 GHz  i =90   i =60   s =90   s =0:1:360 Eta=0  (  polar.) y x z E BIRCSNEC En uzun kenar:l=10 cm Segment uzunluğu  =0.25 cm  =0.5 cm Minimum dalga boyu min =2.5 cm min =5 cm Maksimum frekansf max =12 GHzf max =6 GHz NEC 0 dB  dB : FDTD : PO 30 dB   3.75 dB 30 dB   7.36 dB

BISTATIC – RCS of a 4 Element Vertical Array BIRCS NEC 0 dB   3.25 dB BIRCS.INP l=4 f =3 GHz  i =90   i =0   s =90   s =0:1:360 Eta=0  (  polar.) x y z E BIRCS 30 dB  dB BIRCSNEC En uzun kenar:l=40 cm Segment uzunluğu  =1cm Minimum dalga boyu min =10 cm Maksimum frekansf max =3 GHz

BISTATIC – RCS of a 4 Element Vertical Array NEC 0 dB   4.99 dB  i =90   i =0   s =90   s =0:1:360 Eta=0  (  polar.) x y z E BIRCS 30 dB  –0.86 dB l =2 f =1.5 GHz BIRCS.INP l=2 BIRCSNEC En uzun kenar:l=40 cm Segment uzunluğu  =1cm Minimum dalga boyu min =10 cm Maksimum frekansf max =3 GHz

BISTATIC – RCS of a 4 Element Vertical Array NEC 0 dB   2.63 dB BIRCS.INP l= f =750 MHz  i =90   i =0   s =90   s =0:1:360 Eta=0  (  polar.) x y z E BIRCS 30 dB  3.10 dB BIRCSNEC En uzun kenar:l=40 cm Segment uzunluğu  =1cm Minimum dalga boyu min =10 cm Maksimum frekansf max =3 GHz

BISTATIC – RCS of a 4 Element Vertical Array BIRCS.INP l= / 2 f =375 MHz  i =90   i =0   s =90   s =0:1:360 Eta=0  (  polar.) x y z E BIRCS 30 dB  5.38 dB NEC 0 dB  5.46 dB BIRCSNEC En uzun kenar:l=40 cm Segment uzunluğu  =1cm Minimum dalga boyu min =10 cm Maksimum frekansf max =3 GHz

BISTATIC – RCS of a 4 Element Vertical Array BIRCS.INP l= f =750 MHz  i =90   i =45   s =90   s =0:1:360 Eta=0  (  polar.) x y z E BIRCS 30 dB   0.25 dB NEC 0 dB   4.67 dB BIRCSNEC En uzun kenar:l=40 cm Segment uzunluğu  =1cm Minimum dalga boyu min =10 cm Maksimum frekansf max =3 GHz

BISTATIC – RCS of a 4 Element Vertical Array BIRCS.INP l= f =750 MHz  i =90   i =75   s =90   s =0:1:360 Eta=0  (  polar.) x y z E NEC 0 dB   7.01 dB BIRCS 30 dB   3.64 dB BIRCSNEC En uzun kenar:l=40 cm Segment uzunluğu  =1cm Minimum dalga boyu min =10 cm Maksimum frekansf max =3 GHz

BISTATIC – RCS of a Square Dihedral BIRCS.INP l= f =750 MHz  i =45   i =90   s =45   s =0:1:360 Eta=0  (  polar.) BIRCSNEC En uzun kenar:l=40 cm Segment uzunluğu  =1cm  =2cm Minimum dalga boyu min=10 cm min=20 cm Maksimum frekansfmax =3 GHzfmax=1.5 GHz x y z E NEC 0 dB  5.59 dB BIRCS 30 dB  6.06 dB Geometric Optics

BISTATIC – RCS of a Square Dihedral BIRCS.INP l= f =750 MHz  i =45   i =90   s = 0:1  :360   s = 90  Eta=0  (  polar.) x y z E BIRCSNEC En uzun kenar:l=40 cm Segment uzunluğu  =1cm  =2cm Minimum dalga boyu min=10 cm min=20 cm Maksimum frekansfmax =3 GHzfmax=1.5 GHz x y z E NEC 0 dB  5.59 dB BIRCS 30 dB  6.12 dB

BISTATIC – RCS of a Square Dihedral BIRCS.INP l= f =750 MHz  i =45   i =315   s = 45   s = 0:1  :360  Eta=0  (  polar.) BIRCSNEC En uzun kenar:l=40 cm Segment uzunluğu  =1cm  =2cm Minimum dalga boyu min=10 cm min=20 cm Maksimum frekansfmax =3 GHzfmax=1.5 GHz x y z E NEC 0 dB   4.44 dB BIRCS 30 dB  – 4.17 dB

BISTATIC – RCS of a Square Trihedral  i =45   i =315   s = 45   s = 0:1  :360  Eta=0  (  polar.) x y z E NEC En uzun kenar:l=1 m Segment uzunluğu  =0.1 m Minimum dalga boyu min=1 m Maksimum frekansfmax=300 MHz f =300 MHz NEC 0 dB  dB NEC 0 dB  5.79 dB f =150 MHz Geometric Optics

BISTATIC – RCS of a Rectangular Prism BIRCS BIRCS.INP l= f =375 MHz  i =90   i =0   s =90   s =0:1:360 Eta=0  (  polar.) NEC 0 dB  0.30 dB x y z E BIRCS 30 dB  – 1.77 dB Geometric Optics:

BISTATIC – RCS of a Rectangular Prism BIRCS BIRCS.INP l= f =375 MHz  i =90   i =60   s =90   s =0:1:360 Eta=0  (  polar.) NEC 0 dB   3.18 dB x y z E BIRCS 30 dB  – 3.79 dB

BISTATIC – RCS of a Rectangular Prism BIRCS.INP l= f =375 MHz  i =45   i =60   s =90   s =0:1:360 Eta=0  (  polar.) NEC 0 dB  2.35 dB x y z E BIRCS 30 dB  3.15 dB

x y z E BISTATIC – RCS of a Roketa NEC En uzun kenar:l = 4.5 m Segment uzunluğu  =0.25 m Minimum dalga boyu min=2.5 m Maksimum frekansfmax=120 MHz BIRCS  i =0   i =0   s =0   s =0:1:360 Eta=0  (  polar.) f =120 MHz 0 dB   dB f =60 MHz  i =0   i =0   s =0   s =0:1:360 Eta=0  (  polar.) 0 dB   dB

x y z E BISTATIC – RCS of a Roketa NEC En uzun kenar:l = 4.5 m Segment uzunluğu  =0.25 m Minimum dalga boyu min=2.5 m Maksimum frekansfmax=120 MHz BIRCS 0 dB  dB  i =90   i =0   s =90   s =0:1:360 Eta=0  (  polar.) f =60 MHz 0 dB  dB f =120 MHz  i =90   i =0   s =90   s =0:1:360 Eta=0  (  polar.)

x y z E BISTATIC – RCS of a Roketa NEC En uzun kenar:l = 4.5 m Segment uzunluğu  =0.25 m Minimum dalga boyu min=2.5 m Maksimum frekansfmax=120 MHz 0 dB  dB  i =45   i =0   s =45   s =0:1  :360  Eta=0  (  polar.) f =60 MHz 0 dB  5.63 dB f =120 MHz  i =45   i =0   s =45   s =0:1:360 Eta=0  (  polar.)

BIRCS REFERENCES  “Complex Electromagnetic Problems and Numerical Simulation Approaches” by Levent Sevgi, Doğuş University, IEEE Press, May  “Ece 5490/6490 RCS - Basic Concepts” by Dr. Randy J. Jost, Utah State University.  “Introduction to Radar Systems” by M.Skolnik, McGraw Hill,  “Sensors and Signals Notes” by H.Durrant-Whyte.