DOKUZ EYLÜL ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ

Slides:



Advertisements
Benzer bir sunumlar
FEN BİLİMLERİ ENSTİTÜSÜ METALÜRJİ EĞİTİMİ BÖLÜMÜ
Advertisements

Düzlemsel anizotropiye sahip parçalar haddelenme yönünde , ona dik yönde veya bu 2 yönde herhangi bir açıya sahip yönde farklı plastik şekil değiştirme.
BASİT ELEMANLARDA GERİLME ANALİZİ
KIRILMA MEKANİĞİ – 3 KIc nin tasarımda kullanımı
ISIL İŞLEM TÜRLERİ.
SOĞUK ŞEKİL VERME Soğuk şekil vermenin temeli, pekleşme
Bölüm 5 kristal yapıIı kusurlar
SİSMİK- ELEKTRİK YÖNTEMLER DERS-1
Metallere Plastik Şekil Verme
MEKANİK TESTLER MEKANİK TESTLER.
İMALAT YÖNTEMLERİ-II Yrd. Doç. Dr. Bülent AKTAŞ.
MUKAVEMET I Doç. Dr. Naci ÇAĞLAR
Çalışma sırasında kırılma
ÜRETİM YÖNTEMLERİ Malzeme Özellikleri Mümtaz ERDEM.
PLASTİK ŞEKİL VERMEDE AKMA KRİTERLERİ
MMM 2402 MALZEME BİLİMİ yücel birol.
Makina Elemanlarının Mukavemet Hesabı
Kararsız ve Dalgalı Gerilmeler Altında Yorulma
BASMA VE ÇEKME DENEYLERİ ÇAĞDAŞ BAŞ MEHMET DURMAZ ÖZHAN ÇOBAN
Metallere Plastik Şekil Verme
BASİT EĞİLME ALTINDAKİ KİRİŞLERİN TAŞIMA GÜCÜ
ÖRNEK Şekilde tam değişken moment ile eğilmeye zorlanan St60’dan yapılmış milin emniyet halkası açılarak zayıflatılmış bölgesi görülmektedir. Maksimum.
FİZİKSEL METALURJİ BÖLÜM 5.
Doç.Dr.M.Evren Toygar, DEÜ
ÖZET Darbe yabancı bir cismin bir cisme çarpması olayıdır. Darbe bir dinamik yükleme durumudur. Mukavemet dersinden de bilindiği üzere cisimlerin statik.
Ödev 07 Wheatstone köprüsü, strain-gage, termistör Problem 1:
ÇATLAK UCU PLASTİK ZONU
Kırılma Mekaniğine Giriş
Kırılma Mekaniğine Giriş
SONLU ELEMANLAR YÖNTEMİ
ENERJİ YAKLAŞIMI Çatlak büyümesi için mevcut enerji malzeme direncini kırdığında çatlak genişlemesi, bir başka deyişle kırılma olur. Kırılma için, enerji.
GİRİŞ DİNAMİK’İN TANIMI
MEKANİK ANABİLİM DALI TANITIMI
Yıldız Teknik Üniversitesi Makina Müh. Bölümü
GİRİŞ DİNAMİK’İN TANIMI
SONLU ELEMANLAR DERS 3.
MAKİNE ELEMANLAR DERSİ YILİÇİ PROJESİ
MAKSİMUM GERİLME HASAR TEORİSİ
Alümiyum Şekillendirme Teknolojileri
Materials and Chemistry İstanbul Üniversitesi Metalurji ve Malzeme Mühendisliği İstanbul Üniversitesi Metalurji ve Malzeme Mühendisliği Alümiyum Şekillendirme.
Materials and Chemistry İstanbul Üniversitesi Metalurji ve Malzeme Mühendisliği İstanbul Üniversitesi Metalurji ve Malzeme Mühendisliği Alümiyum Şekillendirme.
HADDELEME Hazırlayan : HİKMET KAYA.
Materials and Chemistry İstanbul Üniversitesi Metalurji ve Malzeme Mühendisliği İstanbul Üniversitesi Metalurji ve Malzeme Mühendisliği Döküm Prensipleri.
MEKANİK Yrd. Doç. Dr. Emine AYDIN Yrd. Doç. Dr. Tahir AKGÜL.
TAŞIYICI SİSTEMLER VE İÇ KUVVETLER
prof. dr. ahmet celal apay
Malzemelerin Mekanik Özellikleri
Materials and Chemistry İstanbul Üniversitesi Metalurji ve Malzeme Mühendisliği İstanbul Üniversitesi Metalurji ve Malzeme Mühendisliği Alümiyum Şekillendirme.
BASİT EĞİLME ALTINDAKİ KİRİŞLERİN TAŞIMA GÜCÜ
Zeminlerde Kayma Mukavemeti Kayma Göçmesi Zeminler genel olarak kayma yolu ile göçerler. Dolgu Şerit temel Göçme yüzeyi kayma direnci Göçme yüzeyi.
MALZEMELERİN MEKANİK DAVRANIŞLARI
KRİSTAL MALZEMELERİN DAYANIMLARININ ARTIRILMASI
TEKİL VE ÇOĞUL KRİSTALLERİN PLASTİK DEFORMASYONU
Bölüm 1 Yapısal Tasarım Çeliğin Malzeme Özellikleri Profiller
Yrd. Doç. Dr. Nesrin ADIGÜZEL
Çentik/Darbe Üç eksenli yükleme hali (çentik)
Yrd. Doç. Dr. Muharrem Aktaş 2009-Bahar
BÖLÜM 2 Kristal Yapılar ve Kusurlar.
Tane sınırları Metal ve alaşımları tanelerden oluşur. Malzemenin aynı atom dizilişine sahip olan parçasına TANE denir. Ancak her tanedeki atomsal.
Yrd.Doç.Dr.Yıldız yaralı özbek
Metallere Plastik Şekil Verme
Harran Üniversitesİ Makİne Mühendİslİğİ YORULMA HASARI
ZTM321 MAKİNE ELEMANLARI 5.hafta
NİŞANTAŞI ÜNİVERSİTESİ
Metallere Plastik Şekil Verme
NİŞANTAŞI ÜNİVERSİTESİ
MECHANICS OF MATERIALS
MECHANICS OF MATERIALS
HILTI ACI 318 Eğitimi.
MECHANICS OF MATERIALS Eğilme Fifth Edition CHAPTER Ferdinand P. Beer
Sunum transkripti:

DOKUZ EYLÜL ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ KIRILMA MEKANİĞİNE GİRİŞ DERS NOTLARI Doç. Dr. M. Evren Toygar DEÜ, Makina MÜhendisliği Bölümü

KIRILMA MEKANİĞİ REFERANSLAR: 1. Anderson, “Fracture Mechanics Fundamentals and Applications.” 2. Richard W.Hertzberg, “Deformation and Fracture Mechanics Of Engineering Materials.” 3. Dowling, "Mechanical Behavior of Materials" 4. Broek, “Elementary Engineering Fracture Mechanics” 5. Ağah Uğuz, “Kırılma Mekaniğine Giriş “

KIRILMA Kırılma, gerilme altında bir maddenin iki veya daha fazla parçaya ayrılması veya parçalanmasıdır. Kırılma, çatlağın başlaması (crack initiation) ve ilerlemesi (crack propagation) olarak iki kısımda incelenir.

Malzemede Hasar Yük taşıyan yapılarda hasar, akma ve kırılmayla oluşur. Akma Hasarı: Akmayla oluşan hasarda önemli hatalar, kristal kafesi düzlemlerinin sürekliliğini bozan ve dislokasyon hareketini engelleyen hatalardır. Ör: tane sınırları, dislokasyon ağları , çökeltiler.. Kırılma Hasarı: Kırılmayla oluşan hasarda, önemli olan hatalar ise makroskobik boyuttadır, plastik deformasyondan ziyade lokal(yerel) gerilme-şekil değiştirme(germe) alanları mevcuttur. Ör: kaynak hataları, malzeme yapısındaki boşluklar, yorulma çatlakları.. DEÜ, Makina MÜhendisliği Bölümü

Malzemede Kırılma Tipleri Sünek Kırılma: Çatlak ilerlemesi öncesinde ve sırasında önemli ölçüde plastik deformasyonla karakterize edilir. Gevrek Kırılma: Hızlı bir çatlak ilerlemesi ve mikro-defo rmasyonla ifade edilir. Gevrek kırılma eğilimi: Azalan sıcaklık Artan deformasyon hızı Üç eksenli gerilme durumunda (özellikle çentik etkisi ile) artar. DEÜ, Makina MÜhendisliği Bölümü

MUKAVEMET KAVRAMLARININ İLK YAPILANMASI Mukavemet kavramlarının ilk temelleri Leonardo da Vinci (1452–1519) zamanına dayanmaktadır. İlk olarak uzunluğun, malzemenin mukavemetine etkisini araştıracak deneyleri öngörmektedir. Eğer deneyler gerçekleştirilebilseydi, boyutun malzemenin mukavemetine etkisi olduğunun ilk belirlenmesi gerçekleşecekti. Bilimin ve ilk mukavemet kavramlarının Galileo ya dayandığı söylenebilir. 17. yüzyılda Galileo yapıların mekaniği ile ilgilendi. Kitabı olan “Due Nuove Scienze”,(1638) kırılmaya karşı mutlak direnç konusundan bahsediliyordu. Çubukların mukavemetinin kesit alanla orantılı olduğunu kitabında ele aldı. Şekil 1 de Galileo’nun çubukta, çekme mukavemetini hesaplamak için kullandığı metodun düzeneği mevcuttur. Şekil 2 gösterilen Vinci’nin düzeneğinden daha yaklaşık basit çekmeyi elde edebilecek çekme mukavemeti kavramını geliştirdi.

Şekil 1 Galileo’ nun çubukta çekme mukavemetini hesapladığı düzenek Şekil 2 Da Vinci’nin kablodaki mukavemeti ölçme için oluşturduğu düzenek

Kırılma Mekaniğinin Tarihsel Gelişimi Birçok yapısal hasar, yapıyı meydana getiren malzemelerin kırılması ile oluşur. Bu tip hataların birçoğu istenmeyen zaman ve şekilde oluşabilir. Modern günümüz yapılarında odaklanılması gereken husus istenmeyen sonuçları minimize etmek için yapılması gerekli tasarımlardır. Çatlak davranışının ifadelendirilmesi, malzemedeki çatlağın analizi ve önlenmesi çalışmaları kırılma mekaniği olarak ifade edilir. Her disiplinde kırılma mekaniği içerilmekte ve tarihi geçmişinin de incelenmesi son derece önem kazanmaktadır.

Geçmişte meydana gelen hata ve kusurları ve manalarını değerlendirmeye katmayan tasarımcılar mutlaka yeniden hataları tekrar etmeye mahkum kalacaklardır. Kırılma mekaniğindeki kavramların gelişimi son yüzyıla ait gibi gözükse de yapıların hizmet süresince çatlak içerse bile dayanım fikri yeni değildir. Bu gerçeği de en iyi vurgulayan, halihazırda geçmiş zamandan günümüze ulaşan tarihi yapılardır.

Eski yapıların stabilitesi, o zamanlardaki yapı malzemelerinin kısıtlı olması gerçeğine rağmen muhteşemdir. Tuğla ve harç gevrek ve çekme yüklerini taşımaya meyilli olmayan malzemeler olduğu halde ilk zamanlarda kullanılan yapı malzemeleri olmuştu. Hatta gevrek kırılma kavramı bile mevcut değilken, kırılmaya karşı bilinmeyerek tasarlanan yapıların zayıf bileşenlerinin basıya maruz kalması sağlanırdı. En güzel örneklerden birisi kemer şeklindeki Roma köprü tasarımlarıdır. Şekil 3 deki kemer şeklindeki köprüde bası kuvvetlerinin yapı içersine çeki kuvvetine göre daha rahat ve hasarsız aktarılabileceği, kırılma olasılığına karşı, bilinmeyerek geliştirilen bir çözüm olarak tarihe geçmiştir.

Şekil 3 Eski Roma köprü tasarımının şematik gösterimi

Yapı Tasarımında ve Yorulma Analizinde Bazı Temel Hedefler Katı cisimler mekaniğindeki en temel hedef, belirli zaman diliminde, yapıların veya bileşenlerinin statik veya dinamik yüklemelere maruz kaldığı halde güvenli bir şekilde hizmet süresinin devamını sağlamak üzere tasarım yapılmasıdır.

Tasarım sürecindeki en önemli sorulardan birisi: Mekanik yorulmayı neler oluşturur? Genel olarak, mekanizmalarn yorulmasını tetikleyen sebepler aşağıdaki konu başlıklarında incelenmektedir. Deformasyon ve Kırılma Elastik Deformasyonun aşılması Burkulma (Buckling) Plastik Deformasyon Kırılma (Fracture) Yorulma (Fatique) Sünme (Creep) Gerilme Korozyon Çatlağı (Stress Corrosion Cracking)

Yapısal Tasarımın Gelişimi Yapısal tasarım sanatı ve dalları insanlık tarihi boyunca hızlı bir şekilde gelişmiştir. Gelişim süreci aşağıdaki şekilde gruplanabilir: I. Daha önceki başarılı tasarımlara dayanan tasarımlar II. Gerilme-şekil değiştirme kavramlarını oluşumu III. Mukavemet Yaklaşımı IV. Elastisite Teorisi Yaklaşımı V. Kırılma Mekaniği Yaklaşımı

Kırılma Mekaniği Kırılma Mekaniği, katı cisimler mekaniğinin bir alanı olup çatlak içeren cisimlerin mekanik davranışı ile ilgilenir. Uygulanan gerilme, çatlak boyutu ve kırılma tokluğu kırılma mekaniğindeki üç önemli faktördür.

Çatlak ve Gerilme Şiddeti Yaklaşımı İçinde 2a uzunluğunda çatlak içeren bir malzeme gerilmeye maruz bırakılıyor. Gerilme bileşeni  ve birimi MPa olan bu malzemenin kalınlığı B ile gösterilmekte ve birimi mm olarak alınmaktadır. Çatlak içeren bu plakanın çatlak ucundaki gerilme şiddeti faktörü KI olup birimi MPam’ dır.

Çatlak Ucundaki ve civarındaki gerilmeler

Yükleme Tipleri ve Gerilme ifadeleri Her tip yüklemede 1/r çatlak ucunda tekillik medana getirir, K (gerilme şiddeti faktörü) ve fij (boyutsuz şekil düzeltme faktörü) yükleme tipine ve geometriye bağlıdır. (i,j=1,3) Mod I : çekme modu Mod II : kayma modu Mod III : yırtılma (makaslama) modu

Çatlak içeren plakadaki gerilme şiddeti faktörü tipleri Çekmeye maruz plakadaki gerilme şiddeti faktörünün mod I ve mod II için hesaplamaları

Çatlaklı sistemlerdeki gerilmeler Merkezde çatlak içeren ve mod I (çekme mukavemetine) gerilmesi en genel anlamda aşağıdaki gibi ifade edilir. Burada boyutsuz şekil düzeltme faktörü olup çatlak geometrisine göre değişmektedir. Merkez çatlak için aynı zamanda β parametresi ile ifade edilebilmektedir. DEÜ, Makina MÜhendisliği Bölümü

Merkezde çatlak içeren gerilmeye maruz plaka Gerilme şiddeti faktörü yaklaşımı K : h 2a b P

Problem : 1 Kırılma tokluğu 100 MPa√m ve akma gerilmesi 700 MPa iken; Kırılma tokluğu     50 MPa√m ve akma gerilmesi 1400 MPa  iken merkezde konumlanan çatlak boyunu hesaplayınız. (w=20 mm; B=5 mm)

Gerilme Tipleri : düzlem gerilme probleminde : z- yönündeki gerilmeler : z = xz = yz = 0 olur, düzlem germe probleminde: 3.yöndeki şekil değiştirmeler sıfır kabul edilir ve böylece : xz = yz = 0 ve z =  (x + y) olur. Sistemdeki geometri ve yükleme şartı değişirken çatlak ucundaki ve farklı tespit edilen noktadaki gerilmeler Mode I yüklemesi için:

Kırılma Geometrileri Kırılma şiddeti faktörü Merkezde çatlak içeren, gerilmeye maruz sistemler Sonlu plaka : Kırılma şiddeti faktörü Sonsuz plaka:

Tek taraflı çentikli, gerilmeye maruz sistemler Kırılma şiddeti faktörü çok küçük çatlaklar için ( a w) yarı sonsuz plaka β=1.12 Tek tarafı çentikli plaka b) oranı sağlandığında yukarıda formülde verilen β değeri kullanılabilir

Kırılma şiddeti faktörü Çift taraflı çentikli, gerilmeye maruz sistemler Kırılma şiddeti faktörü çok küçük çatlaklar için ( a w) yarı sonsuz plaka β=1.12 b)

Şekil düzeltme faktörü Y ile a/w oranı arasındaki ilişki

Eliptik çatlak

Yarı Eliptik Yüzey Çatlağı

Problem 2 : AISI 4340 çelikten yapılmış ve merkezinde çatlak içeren plakanın boyutları ve malzeme özellikleri aşağıda verildiği gibidir. Bu plakada başlangıç çatlağı olarak a=1mm lik kusur mevcuttur. Plaka P=240 N lık bir çekme yüküne maruz olduğuna göre plaka ve çatlak konumu için gerilme şiddeti faktörünü hesaplayınız. (W= genişlik, B=kalınlık H=yükseklik olarak alınmaktadır.

DEÜ, Makina MÜhendisliği Bölümü