ÖLÇME VE DEĞERLENDİRME DERSİ

Slides:



Advertisements
Benzer bir sunumlar
Merkezi Eğilim ve Merkezi Dağılım Ölçüleri
Advertisements

Matematik Öğretmeni RAGIP ŞAHİN
EĞİTİMDE ÖLÇME & DEĞERLENDİRME -12-
MERKEZİ YIĞILMA (EĞİLİM) ÖLÇÜLERİ
T.C. İNÖNÜ ÜNİVERSİTESİ Arapgir Meslek YÜKSEKOKULU
Atlayarak Sayalım Birer sayalım
Ölçmeyle İlgili Temel İstatistikler
Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri
Diferansiyel Denklemler
Tanımlayıcı İstatistikler
Standart Normal Dağılım
Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri
Tanımlayıcı İstatistikler
Bu slayt ‘ten indirilmiştir.
KIR ÇİÇEKLERİM’ E RakamlarImIz Akhisar Koleji 1/A.
Hafta 03: Verinin Numerik Analizi (Yrd.Doç.Dr. Levent AKSOY)
Tıp alanında kullanılan temel istatistiksel kavramlar
HAZIRLAYAN:SAVAŞ TURAN AKKOYUNLU İLKÖĞRETİM OKULU 2/D SINIFI
Uygulama I. Cinsiyet: 1: Kadın 2: Erkek Grup: 0: Kontrol 1: Hasta.
Normal Dağılım.
Bu slayt ‘ten indirilmiştir.
Merkezi Eğilim (Yığılma) Ölçüleri
İSTATİSTİK A. G E N E L B İ L G İ. İstatistik, elde edilen bir grup verinin belli hesaplama yöntemiyle objektif değerlendirilmesidir. Hedef - anlam vermek.
İstatistikte Bazı Temel Kavramlar
PÇAĞEXER / SAYILAR Ali İhsan TARI İnş. Yük. Müh. F5 tuşu slaytları çalıştırmaktadır.
EĞİTİMDE ÖLÇME & DEĞERLENDİRME -11-
EĞİTİMDE NOT VERME VE DEĞERLENDİRME
Değişkenlik Ölçüleri.
EĞİTİMDE ÖLÇME VE DEĞERLENDİRME
ÖLÇME VE DEĞERLENDİRME DERSİ
Büyük ve Küçük Örneklemlerden Kestirme
Ölçme sonuçları üzerinde yapılan istatiksel işlemler
BİYOİSTATİSTİK KONUM VE YAYGINLIK ÖLÇÜLERİ: MERKEZ ÖLÇÜLER & ÇEYREK VE YÜZDELİKLER Prof.Dr.İ.Safa GÜRCAN.
ANA BABA TUTUMU ENVANTERİ
TANIMLAYICI İSTATİSTİKLER
Test : 2 Konu: Çarpanlar ve Katlar
 Merkezi eğilim ölçüleri: Ortalama Ortanca Mod  Ortalama: İki veya ikiden fazla sayının toplamının toplanan sayıların adedine bölünmesiyle elde edilen.
Merkezi Eğilim (Yer) Ölçüleri
VERİ İŞLEME VERİ İŞLEME-4.
EĞİTİMDE ÖLÇME VE DEĞERLENDİRME
DEĞİŞKENLİK ÖLÇÜLERİ.
Merkezi Eğilim Ölçüleri
PÇAĞEXER / SAYILAR Ali İhsan TARI İnş. Yük. Müh. F5 tuşu slaytları çalıştırmaktadır.
Diferansiyel Denklemler
Betimleyici İstatistik – I
Ölçme Sonuçları Üzerinde İstatiksel İşlemler
21 - ÖLÇME SONUÇLARI ÜZERİNE İSTATİSTİKSEL İŞLEMLER
Asimetri ve Basıklık Ölçüleri
Asimetri ve Basıklık Ölçüleri
Tanımlayıcı İstatistikler
Nicel Analizlere Giriş
Merkezi Eğilim (Yığılma) Ölçüleri
Konum ve Dağılım Ölçüleri BBY252 Araştırma Yöntemleri Güleda Doğan.
Istatistik.
ÖLÇME VE DEĞERLENDİRME DERSİ
Ölçme ve Değerlendirme
TEMEL BETİMLEYİCİ İSTATİSTİKLER
Ölçme Sonuçları Üzerinde İstatistiksel İşlemler
Merkezi Eğilim Ölçüleri
MERKEZİ EĞİLİM(YIĞILMA) ÖLÇÜLERİ
DEĞİŞİM ÖLÇÜLERİ.
Merkeze Yayılma Ölçüleri
DEĞİŞKENLİK ÖLÇÜLERİ.
ÖLÇME-DEĞERLENDİRME 8. SINIF
Ölçme Sonuçları Üzerinde İstatistiksel İşlemler
ÖLÇME SONUÇLARI ÜZERİNE İSTATİSTİKSEL İŞLEMLER
TEST İSTATİSTİKLERİ.
STANDART SAPMA.
Sunum transkripti:

ÖLÇME VE DEĞERLENDİRME DERSİ Doç.Dr. Nadir Çeliköz Yıldız Teknik Üniversitesi Eğitim Fakültesi

TEMEL İSTATİSTİK İŞLEMLER

MERKEZİ EĞİLİM (YIĞILMA) ÖLÇÜLERİ Puanların bir merkezde toplanma durumunu gösterir Normal Dağılımda; mod=medyan=aritmetik ortalama bir birine eşittir

Örnek: Öğrencilerin vizeden aldığı notlar şu şekilde verilmiştir: 68, 71, 71, 74, 80, 80, 80, 80, 82, 88, 88 Cevap: 68, 71, 71, 74, 80, 80, 80, 80, 82, 88, 88

MEDYAN (ORTANCA) Dağılımı iki eşit parçaya bölen değerdir (%50 - %50) Sıralama türü ölçekler için uygundur Ham puanların sayısından etkilenir. Uç değerlerden etkilenmez Dağılımın tam ortası isteniyorsa, uç değerler ortalamayı etkiliyorsa, ortalamayı hesaplamak için süre yoksa kullanılır Medyan bulunurken puanlar sıraya konulur Formülü: Çift sayılarda [(N/2) + (N/2)+(1)]/2 % 50 Örnek: Öğrencilerin vizeden aldığı notlar şu şekilde verilmiştir: 68, 71, 74, 80, 82, 88 ortanca Ortanca = [(6/2) + (6/2)+1 ] /2 = (3 + 4)/2 = (74+80)/2 = 77 68, 71, 74, (77) 80, 82, 88 Formülü: Tek sayılarda (N+1)/2 Örnek: Öğrencilerin vizeden aldığı notlar şu şekilde verilmiştir: 68, 71, 74, 80, 82 Ortanca = [(5+1)/2] = 3 68, 71, (74) 80, 82

A.O.= (70+70+71+75+75+76) / 6 A.O.= 72.83 Öğrenci Test Puanı 1 70 2 3 4 75 5 6 76 A.O.= (70+70+71+75+75+76) / 6 A.O.= 72.83

MERKEZİ DAĞILIM (YAYILMA) ÖLÇÜLERİ Puanların bir merkezde etrafındaki dağılımını gösterir

Örnek: Öğrencilerin vizeden aldığı notlar şu şekilde verilmiştir: 68, 71, 71, 74, 80, 80, 80, 80, 82, 88, 88 Cevap: 88 - 68 = 20

Örnek: Öğrencilerin finalden aldığı notlar şu şekilde verilmiştir: 30, 41, 46, 56, 68, 71, 71, 74, 80, 80, 80, 80, 82, 88, 88, 91, 93, 98, 99 Cevap: Q1 (25. Yüzdelik) = 19 (25/100) = 4.75 yani 5. puan = 68 Q3 (75. Yüzdelik) = 19 (75/100) = 14.25 yani 14. puan =88 Q3 = (88-68) / 2 Q3= 20 / 2 = 10

Örnek: Öğrencilerin finalden aldığı notlar şu şekilde verilmiştir: 30, 40, 50, 60, 70 Sınıfın aritmetik ortalaması ve standart sapması kaçtır? Cevap: X = (30+40+50+60+70) / 5 = (300/5) = 50 S = 30-50 = 20 (-20)2 = 400 s=√1000/5 40-50 = 10 (10)2 = 100 s= √200 50-50 = 0 (0)2 = 0 s= 14.14 60-50 = -10 (-10)2 = 100 70-50 = 20 (20)2 = 400 + 1000

En başarılı ders: ortalamaya bak. Standart sapması küçük olan gruplarda notlar ortalamaya daha yakın, büyük olanlarda ise ortalamadan hayli uzak noktalarda olur. Ders Ortalama Standart sapma Türkçe 70 3 Matematik 71 4 Coğrafya Fizik 80 5 Kimya 75 En başarılı ders: ortalamaya bak. En başarısız ders: ortalamalar eşit ise standart sapmaya bak. En başarılı grup: Standart sapmaya bak, eşitse ortalamaya bak.

Z veya T puanı Test1’de daha yüksek. Orada başarılı Hangi testte başarılı? Z veya T puanı Test1’de daha yüksek. Orada başarılı Test1 Test2 Test3 Test4 Dilara’nın puanı 45 40 35 20 Ortalama 25 55 SS 7 5 10 9

KORELASYON Grupların değişik derslerden aldığı notlar arasındaki ilişki. +1 ile -1 arasında bir değer alır. Pozitif ilişki bir not yüksek ise diğer notun da yüksek olacağını (veya tersi), negatif ilişki bir not yüksek ise diğerinin düşük olacağını, sıfıra yakın değerler ise iki ders notları arasında bir ilişkinin olmadığını gösterir. Korelasyon katsayısı hesaplanarak çok sağlam tahminlerde bulunulabilir.

SORULAR 1-6. soruları aşağıdaki verilerden yararlanarak cevaplandırınız. Bir öğrenci grubunun resim dersinden aldıkları notlar; 3,3,4,5,6,6,6,7,9,10 biçimindedir. 1) Puan dağılımının ranjı kaçtır? 3 b) 5 c) 6 d) 7 e) 10

SORULAR 2) Puan dağılımının modu kaçtır? 3 b) 5 c) 6 d) 7 e) 10

SORULAR 3) . Puan dağılımının ortancası kaçtır? a) 3 b) 5 c) 6 d) 7 e) 10

SORULAR 4) Puan dağılımının aritmetik ortalaması kaçtır? a) 5.36 b) 5.9 c) 6.0 d) 6.55 e) 6.65

SORULAR 5) Puan dağılımının standart sapması kaçtır? a) 1.01 b) 2.21 c) 4.89 d) 5.36 e) 6.65

SORULAR 6) Puan dağılımının varyansı kaçtır? a) 1.01 b) 2.21 c) 4.89 e) 6.65

SORULAR 7) Zor bir test sınıfa verildiğinde, dağılımın nasıl olması beklenir? normal dağılım b) sağı çarpık dağılım c) solu çarpık dağılım d) dikdörtgen dağılım e) negatif çarpık dağılım

SORULAR 8) Aşağıdakilerden hangisi medyan için söylenemez? a) merkezi eğilim ölçüsüdür b) dağılımdaki ham puanların sayısından etkilenir c) ortancayı bulurken, veriler mutlaka sıraya konulmalıdır d) ham puanların ortalama etrafındaki yayılma derecesini gösterir e) % 50’si bir tarafta, % 50’si de diğer tarafta olmak üzere grubu ikiye ayırır

SORULAR 9) Aşağıda standart sapmanın hesaplanmasında izlenen aşamalar verilmiştir. Hangi adımlar yer değiştirdiğinde, basamaklar doğru olarak sıralanmış olur? I) ölçme sonuçlarının her birinin ortalamadan farkları bulunur II) ortalamadan farkların kareleri alınır III) çıkan sayının karekökü alınır IV) kareler toplamı, n sayısına bölünür A) I – III B) II – III C) II – IV D) III – IV E) sıralama doğrudur

SORULAR 10) Bir öğrenci 25 kişinin katıldığı matematik sınavında 6. sırada, 35 kişinin katıldığı Türkçe sınavında 8. sırada ve 60 kişinin katıldığı tarih sınavında 10. sırada yer almıştır. Öğrenci hangi dersten daha başarılıdır? a) Tarih – Türkçe – Matematik b) Türkçe – Tarih – Matematik c) Matematik – Türkçe – Tarih d) Matematik – Tarih – Türkçe e) Tarih – Matematik –Türkçe

SORULAR 11) Bir öğretmen sınıfta uyguladığı testlerin normal dağılım gösterdiğini görmüştür; bu testlerin birinde ortalama ile ortalama -2 standart kayma aralığına 5, ortalama ile ortalama +2 standart kayma aralığına 6 notunu vermiştir. Yaklaşık olarak bu sınıfın yüzde (%) kaçı 5 ve 6 notlarını almıştır? a) 13 b) 47 c) 68 d) 81 e) 95

SORULAR 12) Z-puanı -1.5 bulunan bir kişinin ortalama=100 ve standart kayma=20 ile hesaplanan standart puanı nedir? a) 19.5 b) 30 c) 70 d) 78.5 e) 80