Algoritmalar DERS 2 Asimptotik Notasyon O-, Ω-, ve Θ-notasyonları

Slides:



Advertisements
Benzer bir sunumlar
8. SINIF 3. ÜNİTE BİLGİ YARIŞMASI
Advertisements

el ma 1Erdoğan ÖZTÜRK ma ma 2 Em re 3 E ren 4.
Yrd. Doç. Dr. Mustafa Akkol
41 adımda ahşap inşaat Yapımcı : Y.Orman Müh. Abdullah Arslan Proje : Y.Mim. Çelik Erengezgin.
Prof.Dr.Şaban EREN Yasar Üniversitesi Fen-Edebiyat Fakültesi
Diferansiyel Denklemler
NOKTA, DOĞRU, DOĞRU PARÇASI, IŞIN, DÜZLEMDEKİ DOĞRULAR
Birlikler ve onluklar Aşağıdaki tabloyu inceleyerek, sonuçları üzerinde konuşalım.
T.C. İNÖNÜ ÜNİVERSİTESİ Arapgir Meslek YÜKSEKOKULU
Eğitim Programı Kurulum Aşamaları E. Savaş Başcı ASO 1. ORGANİZE SANAYİ BÖLGESİ AVRUPA BİLGİSAYAR YERKİNLİĞİ SERTİFİKASI EĞİTİM PROJESİ (OBİYEP)
ASELSAN- TOKİ YAPRACIK KONUTLARI KOORDİNASYON KURULU
Atlayarak Sayalım Birer sayalım
BEIER CÜMLE TAMAMLAMA TESTİ
Diferansiyel Denklemler
JEODEZİ I Doç.Dr. Ersoy ARSLAN.
Microsoft Danışman Öğrenci
TÜRKİYE EKONOMİSİNE GENEL BAKIŞ VE SON GELİŞMELER KEMAL UNAKITAN MALİYE BAKANI 05 Eylül 2008 T.C. MALİYE BAKANLIĞI.
BEIER CÜMLE TAMAMLAMA TESTİ
8. SAYISAL TÜREV ve İNTEGRAL
ÖNERMELER KÜMELER Matematik Programınd​a 9. sınıftaki değişiklik​ler
Algoritmalar DERS 7 Dengeli Arama Ağaçları Kırmızı-siyah ağaçlar
Algoritmalar En kısa yollar I En kısa yolların özellikleri
Yönetim Bilgi Sistemleri Şubat TAPU VE KADASTRO GENEL MÜDÜRLÜĞÜ.
KIR ÇİÇEKLERİM’ E RakamlarImIz Akhisar Koleji 1/A.
MATEMATİKSEL PROGRAMLAMA
Verimli Ders Çalışma Teknikleri.
HİSTOGRAM OLUŞTURMA VE YORUMLAMA
Soruya geri dön
Prof. Dr. Leyla Küçükahmet
Algoritmalar DERS 3 Böl ve Fethet(Divide and Conquer) İkili arama
Algoritmalar Ders 14 En Kısa Yollar II Bellman-Ford algoritması
HAZIRLAYAN:SAVAŞ TURAN AKKOYUNLU İLKÖĞRETİM OKULU 2/D SINIFI
ÖRNEKLEM VE ÖRNEKLEME Dr.A.Tevfik SÜNTER.
ARALARINDA ASAL SAYILAR
Gün Kitabın Adı ve Yazarı Okuduğu sayfa sayısı
TÜRKİYE KAMU HASTANELERİ KURUMU
FİİLİMSİLER (EYLEMSİLER)
Algoritmalar DERS 4 Çabuk sıralama Böl ve fethet Bölüntüler
Matematik 2 Örüntü Alıştırmaları.
TÜRKİYE EKONOMİSİNE GENEL BAKIŞ VE SON GELİŞMELER KEMAL UNAKITAN MALİYE BAKANI 5 Eylül 2008 T.C. MALİYE BAKANLIĞI.
Tam sayılarda bölme ve çarpma işlemi
DEĞİŞİM YÖNETİMİ Pervin GÖZENOĞLU.
DOĞUŞ ÜNİVERSİTESİ VI. LİSELERARASI MATEMATİK YARIŞMASI
HABTEKUS' HABTEKUS'08 3.
DERS 11 KISITLAMALI MAKSİMUM POBLEMLERİ
Mukavemet II Strength of Materials II
Ek-2 Örnekler.
Yard. Doç. Dr. Mustafa Akkol
EŞİTSİZLİK GRAFİKLERİ
Diferansiyel Denklemler
1 DEĞİŞMEYİN !!!
DENEY TASARIMI VE ANALİZİ (DESIGN AND ANALYSIS OF EXPERIMENTS)
1 2 3 GÜVENLİK İÇİN ÖNCELİKLE RİSKİ YOK EDİLMELİDİR. RİSKİ YOK EDEMIYORSANIZ KORUNUN KKD; SİZİ KAZALARDAN KORUMAZ, SADECE KAZANIN ŞİDDETİNİ AZALTIR.
Bankacılık sektörü 2010 yılının ilk yarısındaki gelişmeler “Temmuz 2010”
AB SIĞIR VE DANA ETİ PAZAR DURUMU 22 Ekim AB TOPLAM BÜYÜKBAŞ HAYVAN VARLIĞI CANLI HAYVAN May / June SURVEY CANLI HAYVAN May / June SURVEY.
1 (2009 OCAK-ARALIK) TAHAKKUK ARTIŞ ORANLARI. 2 VERGİ GELİRLERİ TOPLAMIDA TAHAKKUK ARTIŞ ORANLARI ( OCAK-ARLIK/2009 )
Çocuklar,sayılar arasındaki İlişkiyi fark ettiniz mi?
İSMİN HALLERİ.
Toplama Yapalım Hikmet Sırma 1-A sınıfı.
SAYILAR NUMBERS. SAYILAR 77 55 66 99 11 33 88.
ÇOK DEĞİŞKENLİ FONKSİYONLARDA
1.HAFTA 26 Ağustos 2009 ÇARŞAMBA 2.HAFTA 01 EYLÜL 2009 SALI 3.HAFTA 09 EYLÜL 2009 ÇARŞAMBA 4.HAFTA 15 EYLÜL 2009 SALI 5.HAFTA 23 EYLÜL 2009 ÇARŞAMBA 6.HAFTA.
1.HAFTA 26 Ağustos 2009 ÇARŞAMBA 2.HAFTA 01 EYLÜL 2009 SALI 3.HAFTA 09 EYLÜL 2009 ÇARŞAMBA 4.HAFTA 15 EYLÜL 2009 SALI 5.HAFTA 23 EYLÜL 2009 ÇARŞAMBA 6.HAFTA.
ECHİNODERMATA Kambriyen – Güncel tümüyle denizel Filum
Yard. Doç. Dr. Mustafa Akkol
ÖĞR. GRV. Ş.ENGIN ŞAHİN BİLGİ VE İLETİŞİM TEKNOLOJİSİ.
Diferansiyel Denklemler
Sunum transkripti:

Algoritmalar DERS 2 Asimptotik Notasyon O-, Ω-, ve Θ-notasyonları Yinelemeler •Yerine koyma metodu Yineleme döngüleri Özyineleme ağacı Ana Metot (Master metod) September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Asimptotik notasyon O-notasyonu (üst sınırlar): Tüm n ≥ n0 değerleri için sabitler c > 0, n0 > 0 ise 0 ≤ f(n) ≤ cg(n) durumunda f(n) = O(g(n)) yazabiliriz. September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Asimptotik notasyon O-notasyonu (üst sınırlar): ÖRNEK: 2n2 = O(n3) Tüm n ≥ n0 değerleri için sabitler c > 0, n0 > 0 ise 0 ≤ f(n) ≤ cg(n) durumunda f(n) = O(g(n)) yazabiliriz. ÖRNEK: 2n2 = O(n3) (c = 1, n0 = 2) September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Asimptotik notasyon O-notasyonu (üst sınırlar): ÖRNEK: 2n2 = O(n3) Tüm n ≥ n0 değerleri için sabitler c > 0, n0 > 0 ise 0 ≤ f(n) ≤ cg(n) durumunda f(n) = O(g(n)) yazabiliriz. ÖRNEK: 2n2 = O(n3) (c = 1, n0 = 2) fonksiyonlar, değerler değil September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.4

Asimptotik notasyon O-notasyonu (üst sınırlar): ÖRNEK: 2n2 = O(n3) Tüm n ≥ n0 değerleri için sabitler c > 0, n0 > 0 ise 0 ≤ f(n) ≤ cg(n) durumunda f(n) = O(g(n)) yazabiliriz. ÖRNEK: 2n2 = O(n3) (c = 1, n0 = 2) komik, “tek yönlü” eşitlik (c = 1, n0 = 2) fonksiyonlar, değerler değil September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.5

O-notasyonunun tanımı O(g(n))= { f(n) : tüm n ≥ n0 değerlerinde c > 0, n0 > 0 ise ve 0 ≤ f(n) ≤ cg(n) } September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

O-notasyonunun tanımı O(g(n))= { f(n) : tüm n ≥ n0 değerlerinde c > 0, n0 > 0 ise ve 0 ≤ f(n) ≤ cg(n) } ÖRNEK: 2n2 ∈ O(n3) September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.7

Ω-notasyonu (alt sınırlar) O-notasyonu bir üst-sınır notasyonudur. f(n) en az O(n2)'dir demenin bir anlamı yoktur. September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.8

Ω-notasyonu (alt sınırlar) O-notasyonu bir üst-sınır notasyonudur. f(n) en az O(n2)'dir demenin bir anlamı yoktur. Ω(g(n))= { f(n) : tüm n ≥ n0 değerlerinde c > 0, n0 > 0 ise ve 0 ≤ cg(n) ≤ f(n) } September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.9

Ω-notasyonu (alt sınırlar) O-notasyonu bir üst-sınır notasyonudur. f(n) en az O(n2)'dir demenin bir anlamı yoktur. Ω(g(n))= { f(n) : tüm n ≥ n0 değerlerinde c > 0, n0 > 0 ise ve 0 ≤ cg(n) ≤ f(n) } ÖRNEK: n = Ω (lg n) (c = 1, n0 = 16) September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Θ-notasyonu (sıkı sınırlar) Θ(g(n)) = O(g(n)) ∩ Ω(g(n)) September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Θ-notasyonu (sıkı sınırlar) Θ(g(n)) = O(g(n)) ∩ Ω(g(n)) ÖRNEK: 1 n2 − 2n = Θ(n2 ) 2 September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.12

Θ, Ω ve O notasyonlarının grafik üzerinde örneklenmesi September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.13

ο ve ω notasyonları O-notasyonu ve Ω-notasyonu ≤ ve ≥ gibidir. o(g(n))= { f(n) : tüm n ≥ n0 değerlerinde c > 0 sabiti için n0 sabiti varsa 0 ≤ f(n) ≤ cg(n) } ÖRNEK: 2n2 = o(n3) (n0 = 2/c) September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

ο ve ω notasyonları O-notasyonu ve Ω-notasyonu ≤ ve ≥ gibidir. o(g(n))= { f(n) : tüm n ≥ n0 değerlerinde c > 0 sabiti için n0 sabiti varsa 0 ≤ f(n) ≤ cg(n) } ÖRNEK: n = ω(lg n) (n0 = 1+1/c) September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.15

Yinelemelerin çözümü Ders 1' deki birleştirme sıralaması analizi bir yinelemeyi çözmemizi gerektirmişti. Yinelemeler integral, türev, v.s. denklemlerinin çözümlerine benzer. Ders 3: Yinelemelerin "böl-ve-fethet" algoritmalarına uygulanması. September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Yerine koyma metodu (yöntemi) En genel yöntem: Çözümün şeklini tahmin edin. Tümevarım ile doğrulayın. Sabitleri çözün. September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Yerine koyma metodu (yöntemi) En genel yöntem: Çözümün şeklini tahmin edin. Tümevarım ile doğrulayın. Sabitleri çözün. ÖRNEK: T(n) = 4T(n/2) + n T(1) = Θ(1) olduğunu varsayın. O(n3)'ü tahmin edin. (O ve Ω ayrı ayrı kanıtlayın.) k< n için T(k) ≤ ck3 olduğunu varsayın. T(n) ≤ cn3'ü tümevarımla kanıtlayın. September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Yerine koyma örneği T (n) = 4T (n / 2) + n ≤ 4c(n / 2)3 + n = cn3 − ((c / 2)n3 − n) istenen –kalan ≤ cn3 istenen (c/2)n3 – n ≥ 0 olduğu zamanlarda, örneğin, eğer c ≥ 2 ve n ≥ 1 ise. kalan September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Örnek (devamı) Başlangıç koşullarını da ele almalı,yani, tümevarımı taban şıklarına (base cases) dayandırmalıyız. •Taban: T(n) = Θ(1) tüm n < n0 için, ki n0 uygun bir sabittir. •1 ≤ n < n0 için, elimizde “Θ(1)” ≤ cn3, olur; yeterince büyük bir c değeri seçersek. September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Örnek (devamı) Başlangıç koşullarını da ele almalı,yani, tümevarımı taban şıklarına (base cases) dayandırmalıyız. •Taban: T(n) = Θ(1) tüm n < n0 için, ki n0 uygun bir sabittir. •1 ≤ n < n0 için, elimizde “Θ(1)” ≤ cn3, olur; yeterince büyük bir c değeri seçersek. Bu, sıkı bir sınır değildir ! September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.21

Daha sıkı bir üst sınır? T(n) = O(n2) olup olmadığını kanıtlayacağız. September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Daha sıkı bir üst sınır? T(n) = O(n2) olduğunu kanıtlayacağız. Varsayın ki k < n için T(k) ≤ ck2 olsun: T (n) = 4T (n / 2) + n ≤ 4c(n / 2)2 + n = cn2 + n = cn2 – (– n ) ≤ cn2 [ istenen –kalan ] September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Daha sıkı bir üst sınır? T(n) = O(n2) olduğunu kanıtlayacağız. Varsayın ki k < n için T(k) ≤ ck2 olsun: T (n) = 4T (n / 2) + n ≤ 4c(n / 2)2 + n = cn2 + n = cn2 – (– n ) ≤ cn2 Yanlış c > 0 için eşitsizlik doğru değildir. Kaybettik. September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.24

Özyineleme-ağacı metodu Özyineleme-ağacı, bir algoritmadaki özyineleme uygulamasının maliyetini (zamanı) modeller. Özyineleme-ağacı metodu, bazen güvenilir olmayabilir. Öte yandan özyineleme-ağacı metodu "öngörü" olgusunu geliştirir. Özyineleme-ağacı metodu "yerine koyma metodu" için gerekli tahminlemelerde yararlıdır . September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Özyineleme-ağacı örneği T(n) = T(n/4) + T(n/2) + n2: çözün September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Özyineleme-ağacı örneği T(n) = T(n/4) + T(n/2) + n2: çözün T(n) September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Özyineleme-ağacı örneği T(n) = T(n/4) + T(n/2) + n2: çözün n2 T(n/4) T(n/2) September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Özyineleme-ağacı örneği T(n) = T(n/4) + T(n/2) + n2: çözün n2 (n/4)2 (n/2)2 T(n/16) T(n/8) T(n/8) T(n/4) September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Özyineleme-ağacı örneği T(n) = T(n/4) + T(n/2) + n2: n2 (n/4)2 (n/2)2 (n/16)2 (n/8)2 (n/8)2 (n/4)2 … Θ(1) September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Özyineleme-ağacı örneği T(n) = T(n/4) + T(n/2) + n2: n2 n2 (n/4)2 (n/2)2 (n/16)2 (n/8)2 (n/8)2 (n/4)2 … Θ(1) September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Özyineleme-ağacı örneği T(n) = T(n/4) + T(n/2) + n2: n2 n2 5 n 2 (n/4)2 (n/2)2 16 (n/16)2 (n/8)2 (n/8)2 (n/4)2 … Θ(1) September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Özyineleme-ağacı örneği T(n) = T(n/4) + T(n/2) + n2: n2 n2 5 n 2 (n/4)2 (n/2)2 16 25 n (n/16)2 (n/8)2 (n/8)2 (n/4)2 2 256 … … Θ(1) September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Özyineleme-ağacı örneği T(n) = T(n/4) + T(n/2) + n2: n2 n2 5 n 2 (n/4)2 (n/2)2 16 25 n (n/16)2 (n/8)2 (n/8)2 (n/4)2 2 256 … … Θ(1) Toplam September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Ana Metod (The Master Method) Ana method aşağıda belirtilen yapıdaki yinelemelere uygulanır: T(n) = a T(n/b) + f (n) , burada a ≥ 1, b > 1, ve f asimptotik olarak pozitiftir. September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Üç yaygın uygulama f (n)'i nlogba ile karşılaştırın: 1. f (n) = O(nlogba – ε) ε > 0 sabiti durumunda f (n) polinomsal olarak nlogba göre daha yavaş büyür (nε faktörü oranında). ÇÖZÜM: T(n) = Θ(nlogba) . September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Üç yaygın uygulama f (n)'i nlogba ile karşılaştırın: f (n) = O(nlogba – ε) ε > 0 sabiti durumunda; f (n) polinomsal olarak nlogba göre daha yavaş büyür(nε faktörü oranında). Çözüm: T(n) = Θ(nlogba) . f (n) = Θ(nlogba ) durumunda; f (n) ve nlogba benzer oranlarda büyürler. Çözüm: T(n) = Θ(nlogba lgn) . September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Üç yaygın uygulama f (n)'i nlogba ile karşılaştırın: f (n) = Ω(nlogba + ε) ε > 0 sabiti durumunda; f (n) polinomsal olarak nlogba 'ye göre daha hızlı büyür ( nε faktörü oranında), ve f (n), düzenlilik koşulunu af (n/b) ≤ cf (n) durumunda, c < 1 olmak kaydıyla karşılar. Çözüm: T(n) = Θ(f (n)) . September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Örnekler Örnek. T(n) = 4T(n/2) + n a = 4, b = 2 ⇒ nlogba = n2; f (n) = n. Durum 1: f (n) = O(n2 – ε) ε = 1 için. ∴ T(n) = Θ(n2). September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Örnekler Ör. T(n) = 4T(n/2) + n a = 4, b = 2 ⇒ nlogba = n2; f (n) = n. Durum 1: f (n) = O(n2 – ε) ε = 1 için. ∴ T(n) = Θ(n2). Ör. T(n) = 4T(n/2) + n2 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2. Durum 2: f (n) = Θ(n2) olduğu için ∴ T(n) = Θ(n2lg n). September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Örnekler Ör. T(n) = 4T(n/2) + n3 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3. DURUM 3: f (n) = Ω(n2 + ε) ve 4(n/2)3 ≤ cn3 (düz. koş.) ∴ T(n) = Θ(n3). ε = 1için c = 1/2 için. September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Örnekler Ör. T(n) = 4T(n/2) + n3 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3. DURUM 3: f (n) = Ω(n2 + ε) ve 4(n/2)3 ≤ cn3 (düz. koş.) ∴ T(n) = Θ(n3). ε = 1için c = 1/2 için. Ör. T(n) = 4T(n/2) + n2/lg n a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2/lg n. Ana metod geçerli değil. Özellikle, ε > 0 olan sabitler için nε = ω(lg n) elde edilir. September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.42

Appendix/EK: Geometrik seriler 1 + x + x2 + ... + xn = 1 − x ; x ≠ 1 için 1 − x 1 1 + x + x2 + ... = ; |x| < 1 için 1 − x September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson