X-ışınları nasıl oluşturulur?

Slides:



Advertisements
Benzer bir sunumlar
Her bir kimyasal element, atom çekirdeği içerisindeki proton sayıları veya atom numarası (Z) ile karakterize edilir. Verilen bir elementin tüm atomlarında.
Advertisements

X-Işınları ve Bragg Kırınımı
RÖNTGEN CİHAZLARI ve FİZİK PRENSİPLERİ 7
X-Işınları Fizikte Özel Konular Sunu 6.
CEP TELEFONU TEHDİT Mİ? KOLAYLIK MI?
X IŞINI FLORESAN SPEKTROSKOPİSİ
ENERJİ, ENERJİ GEÇİŞİ VE GENEL ENERJİ ANALİZİ
RÖNTGEN CİHAZLARI ve FİZİK PRENSİPLERİ 8
İÇ RADYASYONDAN KORUNMA
Anjiografi Cihazında Görüntü Nasıl Oluşuyor?
Dalton Atom Modeli. Thomson Atom Modeli. Rutherford Atom Modeli. Bohr Atom Modeli.
Bu slayt, tarafından hazırlanmıştır.
ELEMENT VE BILESIKLER a) Elementler :
ATOM TEORİLERİ.
Yarıiletkenler - 2 Fizikte Özel Konular Sunu 2.
Atom ve Yapısı.
ATOMUN YAPISI.
ATOMİK EMİSYON SPEKTROFOTOMETRESİ
KATILARDA KRİSTAL YAPILAR
Maddenin Tanecikli Yapısı
Elektrik-Elektronik Mühendisliği için Malzeme Bilgisi
MODERN ATOM MODELİ İstanbul Atatürk Fen Lisesi
Elektrik-Elektronik Mühendisliği için Malzeme Bilgisi
Filtrelemenin X-ışını Spektrumu Üzerindeki Etkileri ve Simülasyonu
PLAZMALAR.
Kimyasal bağlar Aynı ya da farklı cins atomları bir arada tutan kuvvetlere kimyasal bağlar denir. Pek çok madde farklı element atomlarının birleşmesiyle.
Işığın Tanecik Özelliği
Atomun yapısı. Spektroskopi. Atom modelleri.
SAF MADDELER: ELEMENTLER VE BİLEŞİKLER
KIMYA.
YÜKLÜ PARÇACIKLARIN MADDE İLE ETKİLEŞİMİ
ATOMUN YAPISI.
X-ışınları 9. Ders Doç. Dr. Faruk DEMİR.
KİMYASAL BAĞLAR.
X IŞINLARI.
Atomun Yapısı ATOM MODELLERİ.
DİLAN YILDIZ KİMYA BÖLÜMÜ
Konu başlıkları Oluşumu
Maddenin yapısı ve özellikleri
ATOM.
ELEMENT VE SEMBOLLERİ SAF MADDE: Kendisinden başka madde bulundurmayan maddelere denir. ELEMENT: İçerisinde tek cins atom bulunduran maddelere denir. Yani.
KİMYASAL BAĞLAR.
ADANA HALK SAĞLIĞI MÜDÜRLÜĞÜ
ATOM II.DERS.
KİMYA -ATOM MODELLERİ-.
GENEL KİMYA DOÇ. DR. AŞKIN KİRAZ
1. Spektroskopi ve Mikroskopi ile Yüzey Analizi
Işık, hem dalga hem de tanecik özelliği gösterir
Bölüm 5 Atom Enerjisinin Kuantalanması
Wilhelm Conrad Röntgen ( )
Wilhelm Conrad Röntgen
Atom Molekül Dersi (Kerem Cankoçak) Bu belgeler ders notları olarak değil, Atom Molekül Ders konularının bir kısmına yardımcı olacak materyeller olarak.
Avusturyalı Fizikçi Erwin Schrödinger, de Broglie dalga denkleminin zamana ve uzaya bağlı fonksiyonunu üst düzeyde matematik denklemi hâline getirmiştir.
GÜNEŞ IŞIĞI VE FOTOSENTEZ PİGMENTLERİ
Elektromanyetik Dalgalar
Raman Spektroskopisi.
KOLORİMETRE- SPEKTROFOTOMETRE
Madde ve Özellikleri.
Radyoaktif madde ve ışınlarla çalışma
Kütle spektrometrisi (MS)
Yarı İletkenlerin Optik Özellikleri
X-ışınları nasıl oluşturulur?
MALZEMELERİN SINIFLANDIRILMASI
Atomik X-Işını Spektrometri
KİMYASAL BAĞLAR Bir molekül, molekülü oluşturan atomların birbirlerine kimyasal bağlar ile tutturulması sonucu oluşur. Atomların kendilerinden bir sonra.
Wilhelm Conrad Röntgen ( )
NİŞANTAŞI ÜNİVERSİTESİ
GİRİŞ EDS; Enerji Dispersiv Spektrum , SEM, TEM’e eklenmek suretiyle, elementlerin enerjilerinden faydalanarak kantitatif kimyasal analiz yapmakta kullanılır.
Wilhelm Conrad Röntgen ( )
Medical Device Tıbbi Cihaz Eğitimi TCESİS R adyasyon Güvenliği Eczane Eğitim Haftası :14 Fahri Yağlı (Medikal Device Expert)
Sunum transkripti:

X-ışınları nasıl oluşturulur? Bunun için yandaki gibi bir X-ışını tüpüne ihtiyaç vardır. Öncelikle tüpün içerisindeki hava boşaltılır. Çünkü tüpteki gaz moleküllerinin sayısı ne kadar az olursa bu moleküllerle çarpışarak hedeften sapan elektronların sayısı da o kadar az olur. Havası boşaltılmış cam tüpün bir ucunda, içinden elektrik akımı geçirilerek ısıtılmış iletken bir telden oluşan katot, diğer ucunda ise ısıya dayanıklı bir madde olan tungstenden yapılmış ve ucu eğik kesilmiş hedef levha olan anot bulunmaktadır. Katotla anot arasına uygulanan yüksek potansiyel farkı katottan termoiyonik yolla yayılan elektronları hızlandırır. İvmeli hareket yapan elektronlar, ışık hızına yakın hıza ulaşarak birkaç keV’luk enerjiye sahip olur ve anoda çarparak bir miktar ilerler. Kısa bir sure içerisinde durur ve bu esnada X-ışınları üretilir.

Anoda çarptIrIlan yüksek hIzlI elektronlarla X IŞINI Üretimi İKİ şekilde gerçekleştİrİlİr.

1. YOL SÜREKLİ X IŞINLARI Katottan çıkan (-) yüklü elektronlar Şekil 1’de görüldüğü gibi hedef atomun (+) yüklü çekirdeğinden kaynaklanan Coulomb kuvvetleri tarafından yavaşlatılır. Bu yavaşlatma sonucunda X-ışını oluşur. Bu yolla her enerji düzeyinde X-ışını oluşturulabildiğinden bu ışınlara sürekli spektrum X-ışını denir.

2. YOL KARAKTERİSTİK X IŞINLARI Şekil 2'de görüldüğü gibi katottan çıkan elektronların hedef atomun K iç yörüngesindeki elektronlardan birine çarparak onu üst yörüngeye çıkarır. Bunun sonucunda X-ışını oluşur. Üst yörüngedeki elektron temel hâle dönerken iki yörünge arasındaki enerji düzeyleri farkı kadar enerjiye sahip X-ışını yayar. Bu yolla oluşan ışınlara karakteristik X-ışını denir.

X-ışınları oluşturulurken hedef tungsten levhaya çarptırılan hızlandırılmış elektronlardan büyük bir çoğunluğunun enerjisi ısıya dönüşür. Ancak bu elektronlardan çok azı, hedef levhanın atomlarıyla tek bir çarpışmada enerjisinin tümünü kaybeder ve X-ışınını oluşturur. Çarpışma esnasında hedefe çarpan elektronların enerjisi X-ışınının enerjisine dönüşür. Bombardımanı gerçekleştiren elektronun tüm enerjisi tek X-ışınına verildiğinden;

Hızlandırma potansiyeli 100 Hızlandırma potansiyeli 100.000 V olan bir X-ışını tüpünde oluşan ışınımın en kısa dalga boyu kaç Å dur?

NOT X-ışını tüpünde katotta üretilen elektronların hızının levhalar arasında oluşturulan gerilimle DOĞRU ORANTILIDIR. Elektronların hızı ne kadar büyükse oluşan X-ışınlarının dalga boyu da o kadar küçük olur. Ayrıca katottan çıkan elektronlar anotta ne kadar kısa sürede durdurulursa oluşan X-ışınlarının frekansı da o kadar büyük olur.

X-ışınlarının ilk elde ediliş yöntemi ile günümüzde elde ediliş yöntemlerine yönelik bir araştırma yapınız. Araştırma sürecinde kütüphane, İnternet, yazılı ve görsel medya gibi farklı ve güvenilir bilgi kaynaklarından yararlanmaya özen gösteriniz. Bu kaynaklardan amacınıza uygun olarak seçtiğiniz bilgiler ışığında iki yöntemi karşılaştırarak aralarındaki benzerlik ve farklılıkları sıralayınız. Araştırma sonucunu arkadaşlarınızla paylaşınız.

Alman Fizikçi W. Kondrad Röntgen’in keşfettiği X-ışınları sonraki yıllarda pek çok bilim insanının araştırmasına konu olmuştur. Örneğin; İngiliz Charls Glover Barkla (Çarls Gılovır Berkıl), 1906 yılında X-ışınlarının dalga özelliği taşıdığı fikrini öne sürmüş ve dalga boyunu hesaplamıştır. Ayrıca, elementlerin röntgen ışıması karakteristiklerini bulmuş ve bu alana önemli katkılar sağlamıştır.

Karakteristik X-ışını elde etmek için kurulan düzenekte tüpe uygulanan gerilim değiştiğinde oluşturulan X-ışınlarının şiddeti ile dalga boyu değişiklik gösterebilir. Bu durumu, 140 keV gerilimle hızlandırılan elektronların tungstenden yapılmış bir hedefi bombalamasıyla oluşturulan X-ışınlarının sayısı ile dalga boylarının dağılımını gösteren yandaki grafik üzerinde inceleyelim. Grafikte iki pikin (keskin çıkıntı) oluşma nedeni tungsten atomundaki üst enerji düzeylerindeki elektronların K kabuğundan uyarılan elektronun yerine düşerken oluşturduğu karakteristik X-ışınlarıdır. V gerilimi artırılırsa, oluşan X-ışınının dalga boyu da küçülür. Ancak bu belirli λmin değerinden küçük olamaz.

Seçeceğiniz iki farklı maddenin karakteristik X-Işınları dalga boyu grafiklerini araştırınız. Bu grafiklerin günlük yaşamda hangi amaçla kullanıldığını kullanım alanlarıyla birlikte açıklayınız. Grafikleri ve kullanım alanlarını Powerpoint sunusu hâline getirerek arkadaşlarınızla paylaşınız. Not : Seçtiğiniz maddelerin diğer arkadaşlarınızın seçtiği maddelerle aynı olmamasına özen gösteriniz.

X IŞINLARININ ÖZELLİKLERİ 1. Çok kısa dalga boyuna (1 Å - 0,01 Å) sahip elektromanyetik dalgalardır. 2. Boşlukta ışık hızıyla doğrusal yayılır. 3. Geçtiği gaz atomlarını iyonlaştırır. 4. Elektromanyetik dalga olduğu için ışıkta olduğu gibi maddeden geçişi sırasında bir kısmı soğurulurken bir kısmı saçılıma uğrar. 5. Tıpta yararlanılan X-ışınları çok yüksek enerjiye sahip olup kurşun bloklar haricindeki pek çok maddeden geçebilir. 6. Canlı dokulara zarar verici etkileri vardır. 7. Yüksüz oldukları için manyetik ve elektrik alandan etkilenmezler. 8. Enine dalga olduğu için; girişim, yansıma, kırılma ve kutuplanma özellikleri mevcuttur. 9. Fotoğraf filmlerine etki eder.

Tıpta tanılama aracı olarak kullanılmasına karşın X-ışınlarının zararlı etkileri de mevcuttur. Enerjileri çok yüksek olan X-ışınları vücudumuzdaki hücrelere çarptığında onları iyonlaştırır. Bunun sonucunda hücrelerin yapılarını yani yaşamsal işlevlerini bozabilir. Böylece olumsuz biyokimyasal tepkimeler sonucunda X-ışınına maruz kalmış hücrelerde kanser oluşumunu kolaylaştırır. Bu nedenle hastanelerin radyoloji bölümünde çalışan radyologlar, X-ışınlarından korunmak için kurşunla kaplanmış özel önlükler giyerler. Röntgen çekimi esnasında ise kurşun kabinde beklerler. Ayrıca hamile bayanların radyoloji bölümlerine girerken gerekli tedbirleri almaları gerekir. Ülkemizde radyologların günlük mesailerinin, yıllık izinlerinin ve hizmet (çalışma) sürelerinin (diğer memurlara oranla 1/4 oranında daha erken) diğer memurlardan farklı olmasının nedeni radyasyona maruz kalmalarıdır.

X-ışını elde edilişi ile fotoelektrik olayın karşılaştırılması Bunun için öncelikle fotoelektrik olayı hatırlayalım. Havası boşaltılmış cam tüp içerisindeki üretecin katoduna foton (ışık) gönderilir. Gönderilen fotonun enerjisi, katodu oluşturan metalin bağlanma enerjisinden büyük olduğunda metalden elektron koparılır. Koparılan elektrona aradaki enerji farkı kadar enerji aktarıldığında elektronlar anoda doğru hareket eder ve bir akım oluşmasına neden olur. Yani fotonlardan elektron elde edilir. Görüldüğü gibi röntgen cihazlarında da kullanılan X-ışınının elde edilişi ile fotoelektrik olay temel olarak birbirinin tersi gibidir. Fotoelektrik olayın gerçekleşmesini sağlayan elektromanyetik dalga, görünür bölgede iken X-ışını eldesinde yayınlanan ışınlar, görünür bölgede değildir. Fotoelektrik olayda fotonlar hedef üzerindeki elektronları sökebilir. X-ışını tüpünde elektronlar hedefe çarptırılarak foton oluşturulur.

Defterinize bir çizelge çizerek X-ışını oluşturulması ile fotoelektrik olay arasındaki benzerlikleri ve farklılıkları bu çizelgeye yazınız.

X IŞINLARI ÜZERİNDE ARAŞTIRMALAR

1914 yılında Nobel Fizik Ödülü alan Alman asıllı fizikçidir 1914 yılında Nobel Fizik Ödülü alan Alman asıllı fizikçidir. X-ışınlarının kristaller tarafından kırıldığını açıklayan çalışmalarıyla tanınır. Max Von Laue (1879-1960) Bilim insanları X-ışınlarının dalga özelliği gösterdiğini ispatlamak için yarık sistemini kullanmıştır. Fakat kullanılan yarığın genişliği X-ışınlarının dalga boyuna oranla çok büyük olduğundan başarı sağlanamamıştır. Alman Fizikçi Max Von Laue (Maks Vön Löi), X-ışınlarının dalga boyunun 0,01 Å ile 1 Å arasında ve bu büyüklüğün hem atom boyutu hem de atomlar arası bağ uzunluğu ile aynı mertebede olduğu bilgisini göz önüne aldı. X-ışınlarının dalga özelliğini, X-ışınlarının kristallerde kırınım deneyleriyle ispatladı.

William Lawrance Bragg 1915 yılında Nobel Fizik Ödülü alan İngiliz asıllı fizikçidir. Maddelerin kristal yapısını açıklayan çalışmalarıyla tanınır. William Lawrance Bragg (1890-1971) William Lawrance Bragg (Vilyım Lavrens Brag) kristale gelen X-ışınlarının, kristaldeki atomların elektronları tarafından saçıldığını ve oluşan desenin kristal düzlemdeki yansıma sonucu gerçekleştiğini keşfetti.

X IŞINLARININ KULLANILDIĞI YERLER

RÖNTGEN CİHAZI Röntgen cihazından çıkan X-ışınlarının dalga boyu maddelerin molekül aralıklarıyla aynı boyutta olması ve X-ışınlarının kemik tarafından Soğurularak o bölgedeki maddenin yapısı tayin edilebilir.

MADDENİN YAPISININ TAYİN EDİLMESİ Maddelerin yapısını açıklamada kullanılan X-ışınlarından başta adli tıp kurumları kriminal polis laboratuarları olmak üzere pek çok alanda ararlanılır. Sanayide malzemelerin kontrolünde X-ışınları kullanılır. Malzemelerin kimyasal yapısını ve bu yapıdaki kusurları anlamak için malzemelere X-ışını gönderilir. Malzemelerin gelen ışınları soğurma düzeylerine göre kusurlar belirlenir. Kimya, elektronik, seramik vb. alanlardaki malzemelerin kontrolü de bu şekilde yapılır.

Havalimanlarında, büyük alışveriş merkezlerinde ve gümrüklerde X-ışınları kullanılarak eşyalar kontrol edilir. İçlerinde yasa dışı madde bulunanlar bu sayede kolaylıkla ayırt edilir.

Arkeologlar X-ışınları sayesinde, yapılarına zarar vermeden tarihî eserleri ve iskeletleri inceleyebilir, yaş tayininde bulunabilirler. Laboratuar koşullarında inceleme yapılacak tarihî esere X-ışını gönderildiğinde oluşan kırınımın, Bragg Yasası gereğince parametreleri hesaplanır. Bu parametreler sayesinde, tarihî esere zarar verilmeden yapısı hakkında bilgi elde edilir.

Fizikte X-ışınlarının tahrip edici özelliğinin keşfinden sonra bu özellikten hastanelerin radyoterapi (ışın tedavisi) servislerinde faydalanılmaya ve kanserli hücrelerin yok edilmesine çalışılmaya başlanmıştır. X-ışınlarının dalga boyu atomik boyutta olduğundan hedef maddeyle etkileştiğinde maddenin kristal yapısında ilerleyen X-ışınları kırınıma uğrar. Kırınıma uğrayan bu ışınların şiddetinden faydalanılarak kristalleri oluşturan atomların konumu ve titreşim genliğine yönelik çeşitli parametreler hesaplanabilir. Böylece incelenen maddenin türü belirlenir. Canlıların DNA yapılarının belirlenmesi de yine bu şekilde olur.

Periyodik cetvelin oluşturulma sürecinde X-ışınlarının keşfinin ne yönde bir etkisi olduğuna dair kütüphane, İnternet, yazılı ve görsel medya gibi farklı ve güvenilir bilgi kaynaklarından bir araştırma yapınız. Bu kaynaklardan amacınıza uygun olarak seçtiğiniz bilgiler ışığında oluşan araştırma sonuçlarını arkadaşlarınızla paylaşınız.