Signal Processing Applications in Mechatronics

Slides:



Advertisements
Benzer bir sunumlar
Zamana Bağımlı Olmayan Doğrusal (LTI) Sistemlerin Frekans Tepkileri
Advertisements

KURULUŞUNUZUN ADI ---[LOGO]--- Who we are Kuruluşun kısa tanıtımı. 50 kelimeyi aşmayacak şekilde.
CPU Tasarım – 3 Single – Cycle CPU Controller Tasarımı
I ASİMO I ASİMO PREPARED: CENGİZ MURAT TEKİNBÜĞRÜ English Course Presentation TURKEY Mechatronics Engineering at SAKARYA UNIVERSITY PREPARED: CENGİZ.
Member of Consortium This project is co-financed by the European Union and the Republic of Turkey Düşük Sıcaklık Güç Üretimi Section 14.
4. Hafta.  % Parametreler %   A = 3; % genlik  f = 440; % frekans (Hz)  phi = -pi/4; % faz  fs = 20e3; % örnekleme oranı (20 kHz)  Ts = 0; %
Logical Design Farid Rajabli.
Computer Networks and Internets, 5e By Douglas E. Comer
S 2/e C D A Computer Systems Design and Architecture Second Edition© 2004 Prentice Hall Chapter 6 Overview Number Systems and Radix Conversion Fixed point.
İMİGİ-İnternet Tabanlı Mekansal İçerikli Görüntü İletimi
İşletim Sistemi.
RCS PREDICTION and REDUCTION TECHNIQUES Doğuş University  ECE Department Doğuş University  ECE Department ÇAĞATAY ULUIŞIK B52 F117.
Ders Kodu: EET134 Ders Adı: Sayısal Elektronik Ders Hocası: Assist. Prof. Dr. MUSTAFA İLKAN.
DEVRE TEOREMLERİ.
Bu proje Avrupa Birliği ve Türkiye Cumhuriyeti tarafından finanse edilmektedir. Mesleki ve Teknik Eğitimin Kalitesinin Geliştirilmesi Projesi Improving.
İ.T.Ü Gemi İnşaatı ve eniz Bilimleri Fakültesi DEN 216 Ölçme Tekniği Bölüm 15: Kuvvet ve Tork Ölçümleri 2. Mertebe Sistemler © Hakan Akyıldız, Deniz Teknolojisi.
Gizli / İsimsiz Raporlama Tanıtımı
Chapter 5: Threads (İş Parçacıkları)
Emotional Freedom Techniques Duygusal Özgürlük Tekniği.
Copyright © 2013 Pearson Education, Inc.. All rights reserved.
Bilgisayar Programlama III C
Copyright © 2013 Pearson Education, Inc.. All rights reserved.
Biyomedikal Sistemlerin Modellenmesi ve Kontrolü Neslihan Serap Şengör İ.T.Ü. Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Sonlu Elemanlar Yöntemi
Muammer Benzeş MVP (IIS) Bulut Bilişim /muammerbenzes.
Görüntü İyileştirme Teknikleri Hafta-8
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
SYSTEMATIC REVIEW AND META- SYNTHESIS WORKSHOP SİSTEMATİK İNCELEME VE METASENTEZ ÇALIŞTAYI HAZİRAN JUNE 2016 İSTANBUL Düzenleyen Kurum.
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Digital Image Processing Image Enhancement (Point Processing)
Free Vibration of SDOF systems Realised by Zied souissi.
Elke HOFFMANN & Engin YILMAZ Hessenkolleg- Wetzlar / Almanya İzmir Özel Fatih Koleji / Türkiye Grup Çalışması ve e-Twinning: Metodlar ve Sonuçları / Grup.
ODTÜ Bilgisayar Mühendisliği Lisans Müfredatı ve Program üzerine Notlar CENG /28/2017.
DÖNÜŞTÜRÜCELER / ALGILAYICILAR / SENSÖRLER Endüstride kullanılan bir çok çeşit algılayıcılar (basınç, akış, sıcaklık) biyomedikal alanlarında kullanılmaya.
Practice your writing skills
YALIN YÖNETİM YALIN SAĞLIK.
Doğrusal programlama:İkililik teorisi (Duality theory)
Elektrik Devrelerinin Temelleri
Signal Processing Applications in Mechatronics
Self-Registration on the Coats Supplier Portal
Dinamik Sistem T=R sürekli zaman Dinamik sistem: (T, X, φt ) T zaman
GÜÇ ELEKTRONİĞİ II Anahtarlamalı Mod DC-AC Inverterler
M.E. 4 N./H.E.P. Perşembe Toplantısı yontembilimsel_hatirlatma
The Simple Linear Regression Model
Banach Sabit Nokta Teoremi (Büzülme Teoremi)
Transforming Signals in Time-Domain into Signals in Frequency-Domain
Ac POWER ANALYSIS Part III..
TURKISH 1 (UHF1271) EYLEMLER&ŞİMDİKİ ZAMAN PRESENT CONTINUOUS TENSE
TURKISH 1 (UHF1271) GÜNLER&DERSLER DAYS&SUBJECTS
FINLAND EDUCATION SYSTEM I am talking about the Finnish education system today.
DATE TIME YEAR MONTH DAY SEASON.
Bazı Doğrusal Olmayan Sistemler
Döngüler ve Shift Register
Force, Work, Energy and Power
Operasyon Yönetim Bekleme Hattı Modelleri
NİŞANTAŞI ÜNİVERSİTESİ
PRODUCTION. CONTENT  WHAT IS PRODUCTION  BENEFITS OF PRODUCTION  ELEMENTS THAT CHARACTERIZE THE PRODUCTION PROCESS  CLASSIFICATION OF PRODUCTION SYSTEMS.
HERŞEY DAHİL KATILIM ÜCRETLERİ /ALL INCLUSIVE REGISTRATION FEE
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
(Dr. Öğr. Üyesi Deniz Dal)
NİŞANTAŞI ÜNİVERSİTESİ
UNIT 6 Future Perfect.
PV SYSTEM DESIGN.
WHAT İS THİS? Select the shape next to the correct word.
NİŞANTAŞI ÜNİVERSİTESİ
PASSİVE VOİCE Edilgen çatI.
MY ACTİVİTİES ON TYPİCAL DAY BAŞAK MORAL 10-D 43.
Sunum transkripti:

Signal Processing Applications in Mechatronics Assist. Prof. Hülya Yalçın e-mail : hulyayalcin@gmail.com Tel : 0212-293-1300 ext:2580 Class hours : Monday 9:30- 12:30 Office hours : Monday 14:30- 16:30 and anytime through email Address : Room 311 in Gümüşsuyu Campus

Signals Hülya Yalçın ©

Continuous-time and discrete-time signals Hülya Yalçın ©

What is a system? Hülya Yalçın ©

Today’s lecture: Hülya Yalçın ©

Linearity Hülya Yalçın ©

Time-invariance Hülya Yalçın ©

Linear time-invariant (LTI) systems Hülya Yalçın ©

Linear System Models - I Hülya Yalçın ©

Linear System Models - II Hülya Yalçın ©

Linear System Models - III Hülya Yalçın ©

Linear System Models - IV Hülya Yalçın ©

Unit Step , Unit Ramp Hülya Yalçın ©

Unit Impulse Hülya Yalçın ©

Main Property of Unit Impulse Hülya Yalçın ©

Transformations of time Hülya Yalçın ©

Examples Hülya Yalçın ©

Shifted Unit Impulse and the Sifting Property Hülya Yalçın ©

Basic Discrete-time Signals Hülya Yalçın ©

Periodic Continuous-time Signals Hülya Yalçın ©

Periodic Discrete-time Signals Hülya Yalçın ©

Next Hülya Yalçın ©

What is a system? Hülya Yalçın ©

Causality Hülya Yalçın ©

Memory Hülya Yalçın ©

Linearity Hülya Yalçın ©

Linearity – example 1 Hülya Yalçın ©

Linearity – example 2 Hülya Yalçın ©

Linearity – example 3 Hülya Yalçın ©

Linearity – example 4 Hülya Yalçın ©

Time - Invariance Hülya Yalçın ©

Time – Invariance : Example 1 Hülya Yalçın ©

Time – Invariance : Example 2 Hülya Yalçın ©

Time – Invariance : Example 3 Hülya Yalçın ©

Linear time-invariant (LTI) systems Hülya Yalçın ©

LTI systems via differential equations Hülya Yalçın ©

The Unit Pulse Response Hülya Yalçın ©

The Unit Pulse Response - continued Hülya Yalçın ©

Convolution Representation Hülya Yalçın ©

Convolution of discrete-time signals Hülya Yalçın ©

Useful properties of Convolution Hülya Yalçın ©

Convolution Representation Hülya Yalçın ©

Computing Discrete Convolution: flip and shift Hülya Yalçın ©

Computing Discrete Convolution: example Hülya Yalçın ©

Computing Discrete Convolution: example cont’ Hülya Yalçın ©

Convolution representation of continuous-time systems Hülya Yalçın ©

The unit impulse response Hülya Yalçın ©

The shifted unit impulse response Hülya Yalçın ©

Derivation of the convolution representation Hülya Yalçın ©

Derivation of the convolution representation Hülya Yalçın ©

Derivation of the convolution representation Hülya Yalçın ©

Convolution of continuous-time signals Hülya Yalçın ©

Additional properties of the convolution Hülya Yalçın ©

Computing convolution integrals: example 1 Hülya Yalçın ©

Computing convolution integrals: example 2 Hülya Yalçın ©

Computing convolution integrals: example 2 Hülya Yalçın ©

Computing convolution integrals: example 2 Hülya Yalçın ©

Hülya Yalçın ©

Hülya Yalçın ©

Hülya Yalçın ©

Hülya Yalçın ©

Hülya Yalçın ©

Hülya Yalçın ©

Hülya Yalçın ©

Fourier Series Hülya Yalçın ©

Review: vectors Hülya Yalçın ©

Vector Spaces Hülya Yalçın ©

Signal Spaces Hülya Yalçın ©

The space of periodic signals Hülya Yalçın ©

Complete orthonormal sets of functions Hülya Yalçın ©

Fourier Series Hülya Yalçın ©

Fourier Coefficients Hülya Yalçın ©

Convergence of Fourier Series Hülya Yalçın ©

Trigonometric Fourier Series Hülya Yalçın ©

Trigonometric Fourier Series Hülya Yalçın ©

Trigonometric Fourier Series Hülya Yalçın ©

Symmetry Properties Hülya Yalçın ©

Trigonometric Fourier series: example Hülya Yalçın ©

Trigonometric Fourier series: example Hülya Yalçın ©

Complex Exponential Fourier Series Hülya Yalçın ©

Complex Exponential Fourier Series Hülya Yalçın ©

Symmetry Properties for real signals Hülya Yalçın ©

Amplitude and phase spectra Hülya Yalçın ©

Fourier Transform Hülya Yalçın ©

Recap: Fourier Series Hülya Yalçın ©

Spectral content of aperiodic signals: the Fourier transform Hülya Yalçın ©

Example: rectangular pulse Hülya Yalçın ©

Inverse Fourier Transform Hülya Yalçın ©

Hülya Yalçın ©

Properties of Fourier Transform Hülya Yalçın ©

Properties of Fourier Transform: Linearity Hülya Yalçın ©

Properties of Fourier Transform: Time-shift Hülya Yalçın ©

Multiplication by a complex exponential Multiplication by a cosine Hülya Yalçın ©

Convolution in time-domain Hülya Yalçın ©

Parseval’s Theorem Hülya Yalçın ©

Duality Example Hülya Yalçın ©

Generalized Fourier Transform Hülya Yalçın ©

Fourier Transform of cosine Hülya Yalçın ©

Fourier transform of a periodic signal Hülya Yalçın ©

Bandlimited and timelimited signals Hülya Yalçın ©

Frequency response of LTI systems Hülya Yalçın ©