NİŞANTAŞI ÜNİVERSİTESİ

Slides:



Advertisements
Benzer bir sunumlar
Kofaktör Matrisler Determinantlar Minör.
Advertisements

MATRİS-DETERMİNANT MATEMATİK.
DERS 3 DETERMİNANTLAR ve CRAMER YÖNTEMİ
KONU: MATRİSLER VE DETERMİNANTLAR
Matrisler ( Determinant )
Temel Matematik 2 Diziler ve Seriler Temel Matematik 2 Diziler ve Seriler Ocak 2016 İ stanbul Üniversitesi Prof. Dr. Ergün Ero ğ lu İ Ü İ şletme Fakültesi.
Temel Matematik 2 9-Seriler Ocak 2016 İstanbul Üniversitesi
Yrd. Doç. Dr. Mustafa Akkol
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
( Akış diyagramını çiziniz )
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
ARAŞTIRMANIN YAZILMASI II: BİÇİMSEL KOŞULLAR
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
Sunum transkripti:

NİŞANTAŞI ÜNİVERSİTESİ İŞletme matemaTİğİ Ozel matrısler ve determınantlar NİŞANTAŞI ÜNİVERSİTESİ © İktisadi, İdari ve Sosyal Bilimler Fakültesi iisbf.nisantasi.edu.tr

NİŞANTAŞI ÜNİVERSİTESİ © kaynaklar Kaynakça: Ders Kitabı: Arif Sabuncuoğlu, İşletme İktisat, Yaşam ve Sosyal Bilimler İçin Genel Matematik, Nobel Yayınevi M.ERDAL BALABAN ‘TEMEL MATEMATİK VE İŞLETME UYGULAMALARI ‘ Kaynak Kitaplar:1):Ahmet Dernek, Genel Matematik, Nobel Yayınevi 2) Halil İbrahim Karakaş, Sosyal ve Beşeri Bilimler İçin Matematik I-II, NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ © Ozel matrısler NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ © Determınantlar Determinant, elemanları reel sayılar olan karesel matrisleri reel sayılara dönüştüren özel bir fonksiyondur. A matrisinin determinantı det A veya IAI şeklinde gösterilir. A matrisi nxn tipinde ise IAI determinantı n. mertebedendir denir. nxn tipindeki bütün karesel matrisler için determinant fonksiyonunun genel olarak bir tek tanımı vardır, ancak bu tanım üst sınıflarda verilecektir. Müfredat gereği 1x1, 2x2, 3x3 tipindeki matrislerin determinantı verilecektir. Bu nedenle 1x1, 2x2, 3x3 determinantlarıyla ilgili özel tanım yapıldığını görüyoruz. Üniversite giriş sınavlarında çıkmış sorulara baktığımızda da en çok 3. mertebe determinantla muhatap edildiğimizi görüyoruz. NİŞANTAŞI ÜNİVERSİTESİ ©

Determınant hesaplama Det A= a*d- b*c Şeklinde hesaplanmaktadır. İkiye iki kare matris için hesaplamadır. KOFAKTÖR HESAPLAMA MATRISIN TRANSPOZU DETERMINANT BULUNARAK MATRISIN TERSI HESAPLANMAKTADIR. NİŞANTAŞI ÜNİVERSİTESİ ©

NİŞANTAŞI ÜNİVERSİTESİ © kofaktor NİŞANTAŞI ÜNİVERSİTESİ ©