Chapter Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... How do the crystal structures of ceramic materials differ from those.

Slides:



Advertisements
Benzer bir sunumlar
Nokta grupları.
Advertisements

I ASİMO I ASİMO PREPARED: CENGİZ MURAT TEKİNBÜĞRÜ English Course Presentation TURKEY Mechatronics Engineering at SAKARYA UNIVERSITY PREPARED: CENGİZ.
Atama ve eşleme (eşleştirme) problemleri (Matching and Assignment problems)
Logical Design Farid Rajabli.
İyonik Kristaller CsCl NaCl Wurtzite Zinc Blende Fluorite NiAs rutile
İŞ SIRALAMA VE ÇİZELGELEME DERS 5
1 Kimyasal Bağlar. 2 Atomları birarada tutan ve yaklaşık 40 kJ/mol den büyük olan çekim kuvvetlerine kimyasal bağ denir. Kimyasal bağlar atomlardan bileşikler.
Hareket halindeki insanlara ulaşın.Mobil Arama Ağı Reklamları Reach customers with Mobile Search Network.
Rezonans.
NOUN CLAUSES (İSİM CÜMLECİKLERİ).
COMPANY Veritabanı Örneği (Gereksinimler)
Periodic Table A way of organising the elements.
Key Terms from the Chapters. Chapter -1 Statistics, Data, and Statistical Thinking Fundemantal Elements of Statistics Statistics: EN: Statistics is the.
BM-305 Mikrodenetleyiciler Güz 2015 (6. Sunu) (Yrd. Doç. Dr. Deniz Dal)
Emotional Freedom Techniques Duygusal Özgürlük Tekniği.
Bölüm 6: Mekanik Özellikler
Bölüm 3: Katılarda Kristal Yapılar
Database for APED Büşra Bilgili | Emirhan Aydoğan | Meryem Şentürk | M. Arda Aydın COMPE 341.
Kovalent Bağlar Kovalent Bağ nedir? - Kovalent bağ, bağ yapan iki atom arasında elektronların paylaşılması sonucunda oluşan kimyasal bir bağdır.
Fonon (Phonon) – Elastik dalga paketidir. Enerjisi, dalga boyu veya frekansı ile karakterize edilir ki bu enerji malzemeye transfer edilir. Özgül ısı (Specific.
Improvement to Rankine cycle
Prof. Dr. Sakin ZEYTİN Karbürleme Prof. Dr. Sakin ZEYTİN
Practice your writing skills
DISCUSSION
CHILD PORNOGRAPHY IŞIK ÜNİVERSİTESİ
Sieve Analysis Concrete Mix Design Technician School.
İSTATİSTİK II Hipotez Testleri 1.
Equilibrium, Gravitation and Periodic Motion
İSTATİSTİK-II Korelasyon ve Regresyon.
Computerized ways to analyze language data
BM-305 Mikrodenetleyiciler Güz 2016 (7. Sunu)
SERAMİK MALZEMELERİN YAPISI
Femore Cream femore medikal jel nedir government shutdown on GE's businesses, Rice remained bullish on GE's renewed focus on core infrastructure areas.
RETROSPECTIVE EVALUATION OF THE TREATMENT APPROACHES OF ECTOPİC PREGNANCIES ACCORDING TO GESTATIONAL WEEK Op. Dr. Nurullah PEKER.
BİLİMSEL ÇALIŞMA BASAMAKLARI SCIENTIFIC WORKING STEPS MHD BASHAR ALREFAEI Y
LEFM and EPFM LEFM In LEFM, the crack tip stress and displacement field can be uniquely characterized by K, the stress intensity factor. It is neither.
BÖLÜM 2: BAĞLAR ve ÖZELLİKLER
Rezonans.
BÖLÜM 2. SERAMİK KRİSTAL YAPISI
MY HOME Hello guys now tell you the house I'm living in.
FINLAND EDUCATION SYSTEM I am talking about the Finnish education system today.
Future: I will/shall & I am going to. Structure: Subject+will/shall+verb(base form)+object.
Kimyasal Bağlar.
Chapter 13 – Heat Treatment of Steels Heat Treating – defined as the controlled heating and cooling of metals for the primary purpose of altering their.
WEEKS Dynamics of Machinery
Döngüler ve Shift Register
NİŞANTAŞI ÜNİVERSİTESİ
İSTATİSTİK II Hipotez Testleri 1.
MAKİNA TEORİSİ II GİRİŞ Prof.Dr. Fatih M. Botsalı.
NİŞANTAŞI ÜNİVERSİTESİ
Turkish cuisine is very popular around the world. It has a very wide options for everyone. The variety of the recipes and the ingredients which are grown.
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
BİLL GATES Şule Eslem ÖZTÜRK NUN OKULLARI Prep-A.
Multipoint programlama
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
Before the Battle of Çanakkale. Why a Front in Çanakkale was Opened? In the summer of 1914, the war continued in Europe with all its intensity, and by.
Feminism, unlike the idea of ​​ mankind, is a trend that is prioritized to bring gender inequality to the agenda. The notion of feminism, which is not.
Chapter 5 – Balancing of accounts
Chapter 4 - The effect of profit or loss on capital and double entry system for expenses and revenues Bölüm 4 – Kâr ve zararın sermaye üzerindeki etkisi.
THE MYSTERIOUS ISLAND JULES VERNE. INFORMATION ABOUT THE BOOK  Name of the book: The Mysterious Island  Author: Jules Verne  Type: Adventure  Number.
DÜZLEMSEL MEKANİZMALARIN
AS AS NOT AS AS COMPARISONS.
According to string theory, every substance in the universe consists of one thing. These strings, which vibrate in different channels, create everything.
People with an entrepreneurial mindset are always brave.
NİŞANTAŞI ÜNİVERSİTESİ
Sunum transkripti:

Chapter Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... How do the crystal structures of ceramic materials differ from those for metals? How do point defects in ceramics differ from those defects found in metals? How are impurities accommodated in the ceramic lattice? How are the mechanical properties of ceramics measured, and how do they differ from those for metals? In what ways are ceramic phase diagrams different from phase diagrams for metals?

Chapter Bonding: -- Can be ionic and/or covalent in character. -- % ionic character increases with difference in electronegativity of atoms. Adapted from Fig. 2.7, Callister & Rethwisch 8e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.) Degree of ionic character may be large or small: Atomic Bonding in Ceramics SiC: small CaF 2 : large

Chapter Ceramic Crystal Structures Oxide structures –oxygen anions larger than metal cations –close packed oxygen in a lattice (usually FCC) –cations fit into interstitial sites among oxygen ions

Chapter Factors that Determine Crystal Structure 1. Relative sizes of ions – Formation of stable structures: --maximize the # of oppositely charged ion neighbors. Adapted from Fig. 12.1, Callister & Rethwisch 8e unstable stable Maintenance of Charge Neutrality : --Net charge in ceramic should be zero. --Reflected in chemical formula: CaF 2 : Ca 2+ cation F - F - anions + A m X p m, p values to achieve charge neutrality Charge C. G.

Chapter Coordination # increases with Coordination # and Ionic Radii Adapted from Table 12.2, Callister & Rethwisch 8e. 2 r cation r anion Coord # < linear triangular tetrahedral octahedral cubic Adapted from Fig. 12.2, Callister & Rethwisch 8e. Adapted from Fig. 12.3, Callister & Rethwisch 8e. Adapted from Fig. 12.4, Callister & Rethwisch 8e. ZnS (zinc blende) NaCl (sodium chloride) CsCl (cesium chloride) r cation r anion To form a stable structure, how many anions can surround around a cation? UNIT CELL- ATOM RATIO ION LOCATIONS

Chapter Computation of Minimum Cation-Anion Radius Ratio Determine minimum r cation /r anion for an octahedral site (C.N. = 6) a  2r anion

Chapter Bond Hybridization Bond Hybridization is possible when there is significant covalent bonding –hybrid electron orbitals form –For example for SiC X Si = 1.8 and X C = 2.5 ~ 89% covalent bonding Both Si and C prefer sp 3 hybridization Therefore, for SiC, Si atoms occupy tetrahedral sites

Chapter On the basis of ionic radii, what crystal structure would you predict for FeO? Answer: based on this ratio, -- coord # = 6 because < < crystal structure is NaCl Data from Table 12.3, Callister & Rethwisch 8e. Example Problem: Predicting the Crystal Structure of FeO Ionic radius (nm) Cation Anion Al 3+ Fe Ca 2+ O 2- Cl - F -

Chapter Rock Salt Structure Same concepts can be applied to ionic solids in general. Example: NaCl (rock salt) structure r Na = nm r Na /r Cl =  cations (Na + ) prefer octahedral sites Adapted from Fig. 12.2, Callister & Rethwisch 8e. r Cl = nm

Chapter MgO and FeO O 2- r O = nm Mg 2+ r Mg = nm r Mg /r O =  cations prefer octahedral sites So each Mg 2+ (or Fe 2+ ) has 6 neighbor oxygen atoms Adapted from Fig. 12.2, Callister & Rethwisch 8e. MgO and FeO also have the NaCl structure

Chapter AX Crystal Structures Adapted from Fig. 12.3, Callister & Rethwisch 8e. Cesium Chloride structure:  Since < < 1.0, cubic sites preferred So each Cs + has 8 neighbor Cl - AX–Type Crystal Structures include NaCl, CsCl, and zinc blende

Chapter AX 2 Crystal Structures Calcium Fluorite (CaF 2 ) Cations in cubic sites UO 2, ThO 2, ZrO 2, CeO 2 Antifluorite structure – positions of cations and anions reversed Adapted from Fig. 12.5, Callister & Rethwisch 8e. Fluorite structure UNIT CELL –TWO DIAGONALS

Chapter ABX 3 Crystal Structures Adapted from Fig. 12.6, Callister & Rethwisch 8e. Perovskite structure Ex: complex oxide BaTiO 3 CHARGE C.G. SEPARATE AT GEOMETRICAL CENTER

Chapter 12 - VMSE: Ceramic Crystal Structures 14

Chapter Density Computations for Ceramics Number of formula units/unit cell Volume of unit cell Avogadro’s number = sum of atomic weights of all anions in formula unit = sum of atomic weights of all cations in formula unit NUMBER OF CAT AND ANION WITHIN AN UNIT CELL

Chapter Silicate Ceramics Most common elements on earth are Si & O SiO 2 (silica) polymorphic forms are quartz, crystobalite, & tridymite The strong Si-O bonds lead to a high melting temperature (1710ºC) for this material Si 4+ O 2- Adapted from Figs , Callister & Rethwisch 8e crystobalite TETRAHEDRON

Chapter Bonding of adjacent SiO 4 4- accomplished by the sharing of common corners, edges, or faces Silicates Mg 2 SiO 4 Ca 2 MgSi 2 O 7 Adapted from Fig , Callister & Rethwisch 8e. Presence of cations such as Ca 2+, Mg 2+, & Al maintain charge neutrality, and 2. ionically bond SiO 4 4- to one another VARIOUS COMBINATIONS

Chapter Quartz is crystalline SiO 2 : Basic Unit: Glass is noncrystalline (amorphous) Fused silica is SiO 2 to which no impurities have been added Other common glasses contain impurity ions such as Na +, Ca 2+, Al 3+, and B 3+ (soda glass) Adapted from Fig , Callister & Rethwisch 8e. Glass Structure Si0 4 tetrahedron 4- Si 4+ O 2- Si 4+ Na + O 2-

Chapter Layered Silicates Layered silicates (e.g., clays, mica, talc) –SiO 4 tetrahedra connected together to form 2-D plane A net negative charge is associated with each (Si 2 O 5 ) 2- unit Negative charge balanced by adjacent plane rich in positively charged cations Adapted from Fig , Callister & Rethwisch 8e.

Chapter Kaolinite clay alternates (Si 2 O 5 ) 2- layer with Al 2 (OH) 4 2+ layer Layered Silicates (cont.) Note: Adjacent sheets of this type are loosely bound to one another by van der Waal’s forces. Adapted from Fig , Callister & Rethwisch 8e.

Chapter Polymorphic Forms of Carbon Diamond –tetrahedral bonding of carbon hardest material known very high thermal conductivity –large single crystals – gem stones –small crystals – used to grind/cut other materials –diamond thin films hard surface coatings – used for cutting tools, medical devices, etc. Adapted from Fig , Callister & Rethwisch 8e. TWO DIAGONAL LINES ZnS

Chapter Polymorphic Forms of Carbon (cont) Graphite –layered structure – parallel hexagonal arrays of carbon atoms –weak van der Waal’s forces between layers –planes slide easily over one another -- good lubricant Adapted from Fig , Callister & Rethwisch 8e. BENZENE STR DOUBLE BONDS

Chapter Polymorphic Forms of Carbon (cont) Fullerenes and Nanotubes Fullerenes – spherical cluster of 60 carbon atoms, C 60 –Like a soccer ball Carbon nanotubes – sheet of graphite rolled into a tube –Ends capped with fullerene hemispheres Adapted from Figs & 12.19, Callister & Rethwisch 8e.

Chapter Vacancies -- vacancies exist in ceramics for both cations and anions Interstitials -- interstitials exist for cations -- interstitials are not normally observed for anions because anions are large relative to the interstitial sites Adapted from Fig , Callister & Rethwisch 8e. (Fig is from W.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. 1, Structure, John Wiley and Sons, Inc., p. 78.) Point Defects in Ceramics (i) Cation Interstitial Cation Vacancy Anion Vacancy

Chapter Frenkel Defect -- a cation vacancy-cation interstitial pair. Shottky Defect -- a paired set of cation and anion vacancies. Equilibrium concentration of defects Adapted from Fig.12.21, Callister & Rethwisch 8e. (Fig is from W.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. 1, Structure, John Wiley and Sons, Inc., p. 78.) Point Defects in Ceramics (ii) Shottky Defect: Frenkel Defect

Chapter Electroneutrality (charge balance) must be maintained when impurities are present Ex: NaCl Imperfections in Ceramics Na + Cl - Substitutional cation impurity without impurityCa 2+ impurity with impurity Ca 2+ Na + + Ca 2+ cation vacancy Substitutional anion impurity without impurity O 2- impurity O 2- Cl - anion vacancy Cl - with impurity

Chapter Ceramic Phase Diagrams MgO-Al 2 O 3 diagram: Adapted from Fig , Callister & Rethwisch 8e. 

Chapter Mechanical Properties Ceramic materials are more brittle than metals. Why is this so? Consider mechanism of deformation –In crystalline, by dislocation motion –In highly ionic solids, dislocation motion is difficult few slip systems resistance to motion of ions of like charge (e.g., anions) past one another

Chapter Room T behavior is usually elastic, with brittle failure. 3-Point Bend Testing often used. -- tensile tests are difficult for brittle materials. Adapted from Fig , Callister & Rethwisch 8e. Flexural Tests – Measurement of Elastic Modulus F L/2  = midpoint deflection cross section R b d rect.circ. Determine elastic modulus according to: F x linear-elastic behavior  F  slope = (rect. cross section) (circ. cross section)

Chapter point bend test to measure room-T flexural strength. Adapted from Fig , Callister & Rethwisch 8e. Flexural Tests – Measurement of Flexural Strength F L/2  = midpoint deflection cross section R b d rect.circ. location of max tension Flexural strength: Typical values: Data from Table 12.5, Callister & Rethwisch 8e. Si nitride Si carbide Al oxide glass (soda-lime) Material  fs (MPa) E(GPa) (rect. cross section) (circ. cross section)

Chapter SUMMARY Interatomic bonding in ceramics is ionic and/or covalent. Ceramic crystal structures are based on: -- maintaining charge neutrality -- cation-anion radii ratios. Imperfections -- Atomic point: vacancy, interstitial (cation), Frenkel, Schottky -- Impurities: substitutional, interstitial -- Maintenance of charge neutrality Room-temperature mechanical behavior – flexural tests -- linear-elastic; measurement of elastic modulus -- brittle fracture; measurement of flexural modulus

Chapter Core Problems: Self-help Problems: ANNOUNCEMENTS Reading: