_ _ _ DC Çalışma Noktası Çözüm i tek çözüm çok çözüm + çözüm yok N Is

Slides:



Advertisements
Benzer bir sunumlar
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Advertisements

Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi
Devre ve Sistem Analizi Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Eleman Tanım Bağıntıları Direnç Elemanı: v ve i arasında cebrik bağıntı ile temsil edilen eleman v i q Ø direnç endüktans Kapasite memristor Endüktans.
Lineer Direnç Devreleri Lineer, zamanla değişmeyen direnç elemanları Bağımsız kaynaklar Amaç: Özel bir grup direnç elemanlarından oluşmuş devrelerin çözümü.
Elektrik Devrelerinin Temelleri dersinde ne yapacağız? Amaç: Fiziksel devrelerin elektriksel davranışlarını öngörme akım ve gerilim Hatırlatma Teori oluşturken.
Graf Teorisi Pregel Nehri
Ders Hakkında 1 Yarıyıl içi sınavı 16 Nisan 2013 % 22 3 Kısa sınav 12 Mart 9 Nisan 14 Mayıs % 21 1 Ödev % 7 Yarıyıl Sonu Sınavı % 50.
Kararlılık Sıfır giriş kararlılığı Tanım: (Denge noktası) sisteminin sabit çözümleri, sistemin denge noktalarıdır. nasıl belirlenir? Cebrik denkleminin.
1. Mertebeden Lineer Devreler
Maksimum Güç Transferi Teoremi
Zamanla Değişmeyen Lineer Kapasite ve
Lineer, Zamanla değişmeyen 2- Kapılılar Zorlanmış çözüm ile ilgileniyor İlk koşullar sıfır 1- kapılılar için tanımladığımız Thevenin-Norton eşdeğerlerini.
Devre Denklemleri: Genelleştirilmiş Çevre Akımları Yöntemi
Toplamsallık ve Çarpımsallık Özelliği
3-Fazlı Devreler Neden? Yüksek Gerilim Üç Faz AC- Kaynak
+ + v v _ _ Lineer Olmayan Direnç Bazı Özel Lineer Olmayan Dirençler
2- Jordan Kanonik Yapısı
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
Genelleştirilmiş Çevre Akımları Yöntemi
Izhikevich Sinir Hücresinin davranışı Deneysel sonuçModelden elde edilen sonuç E.M. Izhikevich, “Dynamical Systems in Neuroscience”, MIT Press, 2007.
2-Uçlu Direnç Elemanları
Negatif-Pozitif Geribesleme Devreleri Lineer bölgede v in vdvd ioio +vo+vo v in ioio +vo+vo +-+- vdvd.
Lineer Direnç Devreleri Lineer, zamanla değişmeyen direnç elemanları Bağımsız kaynaklar Amaç: Özel bir grup direnç elemanlarından oluşmuş devrelerin çözümü.
Devre ve Sistem Analizi
Elektrik Devrelerinin Temelleri
Eleman Tanım Bağıntıları
Elektrik Devrelerinin Temelleri
Elektrik Devrelerinin Temelleri
Devre Fonksiyonu: Özellik: Herhangibir devre fonksiyonunun genliği w’nın çift fonksiyonudur, fazı da her zaman w’nın tek fonksiyonudur. Tanıt: ve Lemma’dan.
Sürekli Sinüsoidal Hal
Eleman Tanım Bağıntıları
Genelleştirilmiş Çevre Akımları Yöntemi
İşlemsel Kuvvetlendirici
Eleman Tanım Bağıntıları
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
Elektrik Devrelerinin Temelleri
npn Bipolar Tranzistör Alçak Frekanslardaki Eşdeğeri
Genelleştirilmiş Çevre Akımları Yöntemi
Seri ve Paralel 2-uçlu Direnç Elemanlarının Oluşturduğu 1-Kapılılar
Hatırlatma: Durum Denklemleri
Hatırlatma: Kompleks Sayılar
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
+ + v v _ _ Hatırlatma Lineer Olmayan Direnç
_ _ Bazı Lineer 2-kapılı Direnç Elemanları
+ - i6 =2i i ik1 =cos2t Vk2 =sin(3t+15) R1 C6 ik1 Vk2 R1 = R1 = 1 ohm
Çok-Uçlu Direnç Elemanları
Ders Hakkında 1 Yarıyıl içi sınavı 11 Nisan 2010 % 26
Maksimum Güç Transferi Teoremi
Ders Hakkında 1 Yarıyıl içi sınavı 14 Nisan 2014 % 30
Hatırlatma * ** ***.
Lineer olmayan 2-kapılı Direnç Elemanları
Akım kontrollü gösterimini elde ediniz
KAY ve KGY toplu parametreli devrelerde geçerli
SSH’de Güç ve Enerji Kavramları
Lemma 1: Tanıt: 1.
Laplace dönüşümünün özellikleri
Matrise dikkatle bakın !!!!
Ön bilgi: Laplace dönüşümü
Thevenin (1883) ve Norton (1926) Teoremleri
3-Fazlı Devreler Neden? Yüksek Gerilim Üç Faz AC- Kaynak
Bazı Doğrusal Olmayan Sistemler
İşlemsel Kuvvetlendirici
Sunum transkripti:

_ _ _ DC Çalışma Noktası Çözüm i tek çözüm çok çözüm + çözüm yok N Is 1-kapılısı 2-uçlu dirençler + _ v i Is Çözüm tek çözüm çok çözüm çözüm yok tek çözüm + _ v i Is + _ v i Is çok çözüm

+ _ v i Is çözüm yok bağımsız akım kaynağı ve/veya bağımsız gerilim kaynağı giriş ilgilenilen akım ve/veya gerilim çıkış DC girişli bir devreye ilişkin çözümlere çalışma noktaları adı verilir. DC analizi çalışma noktalarının bulunmasıdır. ib ia Nb Na d1 d1’ vb va + _ KAY + KGY ETB Bu iki bağıntının çözümü DC çalışma noktalarını verir.

DC çalışma noktalarını bulunuz L.O. Chua, C.A. Desoer, S.E. Kuh. “Linear and Nonlinear Circuits”, Mc.Graw Hill, 1987, New York

Küçük İşaret Analizi _ i + IQ v N VQ Eb Eb +vm Eb -vm Çalışma noktasını belirle. Nasıl? Lineer olmayan elemanın çalışma noktası civarında lineer eşdeğerini belirle. Nasıl?

Lineer Eşdeğer Varsayım: Hatırlatma: Taylor Serisi Küçük işaret iletkenliği

Çok-Uçlu Direnç Elemanları 2-kapılı 3-uçlu + _ v1 v2 i1 i2 d1 d2 d3 + _ v1 v2 i1 i2 3-uçlu 2-kapılı 3-uçluyu tanımlayan uç büyüklükleri v1 ,v2 , i1 , i2 2-kapılıyı tanımlayan kapı büyüklükleri v1 ,v2 , i1 , i2 d1 d2 + _ v1 v2 i1 i2

2-kapılı direnç elemanlarını tanımlamak için 4 büyüklük (v1 ,v2 , i1 , i2 ) ve iki denklem f1 (v1 ,v2 , i1 , i2 )=0 f2 (v1 ,v2 , i1 , i2 )=0 var. Acaba bir iki kapılıya karşı düşen kaç gösterim var? iki değişkeni diğer ikisi cinsinden yazacağımızı düşünelim: Lineer 2-kapılılar için 6 gösterim: Akım Kontrollü + _ v1 v2 i1 i2 N + _ v1 v2 i1 i2 N Gerilim Kontrollü

_ _ + v1 v2 i1 i2 Hibrit 1 + v1 v2 i1 i2 Hibrit 2 Transmisyon 1