GrafTeorisine İlişkin Bazı Tanımlar Tanım: (Derece) Bir düğüme bağlı eleman sayısına o düğümün derecesi denir. Tanım: (Yol) G grafının aşağıdaki özellikleri sağlayan Gy alt grafına yol denir: Gy ‘nin n çizgisi, n+1 düğümü vardır. Gy ‘deki çizgiler e1, e2, ...,en düğümler d1,d2, ....,dn+1 olmak üzere sırasıyla öyle numaralanabilirler ki ek çizgisinin düğümleri dk ve dk+1 olur. d1 ve dn+1 düğümlerinin dereceleri bir diğer düğümlerin dereceleri ikidir. Tanım: (Birleşik Graf) Verilen G grafında herhangi iki düğüm arasında en az bir yol varsa buna birleşik graf denir.
Tanım: (Çevre) G grafının aşağıdaki özellikleri sağlayan Ga alt grafına çevre denir: Ga birleşik bir graftır. Ga ‘daki bütün düğümlerin dereceleri ikidir. Tanım: (Ağaç) Birleşik bir G grafının aşağıdaki özellikleri sağlayan GT alt grafına ağaç denir: GT , G’nin tüm düğümlerini kapsar. GT çevre içermez. Tanım: (Dal) Ağaç’ın elemanlarına dal denir. Tanım: (Kiriş) G grafından GT çıkarıldığında geriye kalan alt grafa kirişler kümesi denir. Sonuç: nd düğümlü bir G grafında seçilecek dal sayısı nd-1 dir.
Tanım: ( Temel Çevreler Kümesi) ne elemanlı nd düğümlü birleşik bir G grafında GT seçilmiş bir ağaç olsun Bu ağacın belirlediği (ne –nd +1) adet kirişin her birisi diğer elemanları dal olmak üzere bir çevre tanımlar. Bu çevreye temel çevre, temel çevrelerin oluşturduğu kümeye de temel çevreler kümesi denir. Tanım: ( Kesitleme) Birleşik bir G grafının aşağıdaki özellikleri sağlayan GK alt grafına kesitleme denir: G grafından GK çıkarıldığında geriye kalan graf iki parçadır. GK ‘nın bir elemanını yerine koyarsak graf birleşik olur. Tanım: ( Temel Kesitlemeler Kümesi) ne elemanlı nd düğümlü birleşik bir G grafında GT seçilmiş bir ağaç olsun nd-1 tane dalın her biri diğer elemanları kiriş olmak üzere bir kesitleme tanımlar. Bu kesitlemeye temel kesitleme, temel kesitlemelerin oluşturduğu kümeye de temel kesitlemeler kümesi denir.
3. Kirchhoff’un Akım Yasası (KAY) Tüm toplu parametreli devrelerde, her t anında herhangi bir kesitlemeye ilişkin akımların cebirsel toplamı sıfırdır. Teorem: Gauss Yüzeyleri için Düğümler için Kesitlemeler için KAY KAY KAY