Kesikli ve Sürekli Şans Değişkenleri İçin;

Slides:



Advertisements
Benzer bir sunumlar
Normal Dağılım Dışındaki Teorik Dağılımlar
Advertisements

BENZETİM Prof.Dr.Berna Dengiz 8. Ders.
BENZETİM Prof.Dr.Berna Dengiz 7. Ders.
Beklenen değer ve Momentler
İstatistik Tahmin ve Güven aralıkları
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ
KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI
Hazırlayan: Özlem AYDIN
Rassal Değişken S örnek uzayı içindeki her bir basit olayı yalnız bir gerçel (reel) değere dönüştüren fonksiyona rassal değişken adı verilir. Şu halde.
5 Gamma Dağılımı Gamma dağılımının yoğunluk fonksiyonu şöyledir.
MODERN PORTFÖY TEORİSİ
Normal Dağılım.
Sürekli Olasılık Dağılım (Birikimli-Kümülatif)Fonksiyonu
Sürekli Olasılık Dağılımları
OLASILIK ve OLASILIK DAĞILIMLARI
Yaygınlık Ölçüleri Bir dağılımdaki değerlerin ortalamaya olan uzaklıkları farklılıklar gösterir. Bu farklılıkların derecesi dağılımın yaygınlığı kavramını.
Bileşik Olasılık Dağılım Fonksiyonu
TEORİK DAĞILIMLAR 1- Binomiyal Dağılım 2- Poisson Dağılım
SÜREKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK YOĞUNLUK FONKSİYONLARI
OLASILIK ve KURAMSAL DAĞILIMLAR
Merkezi Eğilim (Yer) Ölçüleri
PORTFÖY OPTİMİZASYONU
Kesikli Şans Değişkenleri İçin;
1 OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı.
DEĞİŞKENLİK ÖLÇÜLERİ.
Hipotez Testi.
Merkezi Eğilim (Yer) Ölçüleri
KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI
Kİ-KARE DAĞILIMI VE TESTİ
OLASILIK.
DEĞİŞKENLİK ÖLÇÜLERİ.
SÜREKLİ ŞANS DEĞİŞKENLERİ
Asimetri ve Basıklık Ölçüleri
Asimetri ve Basıklık Ölçüleri
OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır.
Olasılık dağılımları Normal dağılım
Olasılık Dağılımları ve Kuramsal Dağılışlar
Bölüm 07 Sürekli Olasılık Dağılımları
Uygulama 3.
Kesikli ve Sürekli Dağılımlar
Asimetri ve Basıklık Ölçüleri
OLASILIK DAĞILIMLARI Bu kısımda teorik olasılık dağılımları incelenecektir. Gerçek hayatta birçok olayın dağılımı bu kısımda inceleyeceğimiz çeşitli olasılık.
İSTATİSTİK YGULAMALARI: SINAVA HAZIRLIK
KESİKLİ RASSAL DEĞİŞKENLER
Kesikli Olasılık Dağılımları
Bilişim Teknolojileri için İşletme İstatistiği Yrd. Doç. Dr. Halil İbrahim CEBECİ B.
İstatistik Tahmin ve Güven aralıkları
Sürekli Olasılık Dağılımları
SÜREKLİ OLASILIK DAĞILIŞLARI Standart Normal Dağılım
Tacettin İnandı Olasılık ve Kuramsal Dağılımlar 1.
Konum ve Dağılım Ölçüleri BBY252 Araştırma Yöntemleri Güleda Doğan.
Rastgele Değişkenlerin Dağılımları
İSTATİSTİK II Örnekleme Dağılışları & Tahminleyicilerin Özellikleri.
Teorik Dağılımlar: Diğer Dağılımlar
Atatürk Üniversitesi Tıp Fakültesi
DERS3 Prof.Dr. Serpil CULA
3. Hipergeometrik Dağılım
İSTATİSTİK II BAĞIMSIZLIK TESTLERİ VE İYİ UYUM TESTLERİ “ c2 Kİ- KARE TESTLERİ “
DERS4 Prof.Dr. Serpil CULA
KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI
DEĞİŞKENLİK ÖLÇÜLERİ.
B- Yaygınlık Ölçüleri Standart Sapma ve Varyans Değişim Katsayısı
DEĞİŞKENLİK ÖLÇÜLERİ.
Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları
TEORİK DAĞILIMLAR.
Ö RNEK 1 Rasgele olarak seçilen 10 ailenin gelir ve tüketimleri 100 TL cinsinden aşağıdaki gibi verilmiştir: X ve Y ortak olasılık tablosunu düzenleyiniz.
5 Gamma Dağılımı Gamma dağılımının yoğunluk fonksiyonu şöyledir.
1- Değişim Aralığı (Menzil) Bir serideki en büyük değer ile en küçük değer arasındaki fark olarak tanımlanır. R= X max –Xmin 2 – Ortalama Sapma Seriyi.
OLASILIK DAĞILIMLARI Bu kısımda teorik olasılık dağılımları incelenecektir. Gerçek hayatta birçok olayın dağılımı bu kısımda inceleyeceğimiz çeşitli olasılık.
Sunum transkripti:

Kesikli ve Sürekli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

P(X=x) = P(x) Kesikli Şans Değişkenlerinin Olasılık Fonksiyonları X, şans değişkeni ve x1,x2,..,xn bu tesadüfi değişkenin alabileceği değerler olsun X tesadüfi değişkeninin herhangi bir x değerini alma olasılığı P(X=x) = P(x) şeklinde gösterilir. Bu olasılık X in dağılım ya da olasılık kanunu diye adlandırılır. Kesikli X değişkeninin hangi değerleri hangi olasılıklarla alacağını gösteren fonksiyona olasılık fonksiyonu denir. Bir dağılımın kesikli olasılık fonksiyonu olabilmesi için 1. P(x) 0 , tüm x değerleri için 2. şartlarını sağlaması gerekir.

Örnek: Hilesiz bir zarın atıldığında x şans değişkeni üst yüze gelen sayıyı ifade etmek üzere bu x şans değişkeninin olasılık fonksiyonunu elde ediniz. S = { x / 1,2,3,4,5,6 } P ( X = xi ) = 1 / 6 X 1 2 3 4 5 6 P ( X = xi ) 1 / 6 İki farklı şekilde ifade edilen x şans değişkeninin dağılımına bakıldığında P(Xi) ≥ 0 ve tüm x değerleri için ∑P(X=x)= 1 şartları sağlandığı görülmekte ve P(X=x) ‘in bir olasılık fonksiyonu olduğu sonucu ortaya çıkmaktadır.

Beklenen Değer Bir şans değişkeninin herhangi bir olasılık fonksiyonunda almış olduğu tüm değerlerin ortalaması o şans değişkeninin beklenen değeridir. X şans değişkeninin beklenen değeri; E (x) ile gösterilir. Bir şans değişkenin beklenen değeri o şans değişkeninin ortalamasına eşittir. E (x) = µ

Beklenen Değer Kullanarak Varyansın Elde Edilmesi E(x2) : x şans değişkeninin karesinin beklenen değeri

Kesikli Şans Değişkenleri İçin Beklenen Değer ve Varyans

Bu dağılışa göre bayinin; Örnek: Bir otomobil bayisinin günlük araba satışlarının dağılımının aşağıdaki gibi olduğunu ifade etmektedir. Bu dağılışa göre bayinin; 5 ten fazla araba satması olasılığını bulunuz P(X = 6) + P ( X = 7 ) + P ( X = 8 ) = 0,15 b) Satışların beklenen değerini hesaplayıp yorumlayınız. E(X) = = (0)(0,02)+(1)(0,08)+(2)(0,15)+….+(8)(0,01) =3,72 Bayinin 100 günde 372 araba satışı yapması beklenir. c) Satışların varyansını bulunuz. E(X2) = =(02)(0,02)+(12)(0,08)+… ….+ (82)(0,01) = 16,68 Var(X)= E(X2) - [E(X)] 2 = 16,68 - (3,72)2 = 2,84 X 1 2 3 4 5 6 7 8 P(X) 0,02 0,08 0,15 0,19 0,24 0,17 0,10 0,04 0,01

Sürekli Şans Değişkenlerinin Olasılık Fonksiyonları Sürekli değişkenlerdeki olasılık fonksiyonuna sürekli olasılık fonksiyonu, olasılık yoğunluk fonksiyonu, veya sadece yoğunluk fonksiyonu denir. Sürekli bir şans değişkenin olasılık yoğunluk fonksiyonu f(x) ile gösterilir. Herhangi bir fonksiyonun olasılık yoğunluk fonksiyonu olabilmesi için; X’in tanım aralığı için f(xi) ≥ 0 , şartlarını sağlaması gereklidir.

Sürekli Şans Değişkenleri İçin Olasılık Sürekli bir değişkenin tanımlı olduğu aralıkta sonsuz sayıda değer vardır. Değişkenin bunlar içinden belirli bir değeri alma olasılığı olur. Bu sebepten dolayı, sürekli değişkenlere ait olasılık fonksiyonları, kesikli değişkenlerin aksine bu değişkenin belirli bir değeri alma olasılıklarının hesaplanmasına imkan vermez. Bu fonksiyonlarda değişkenin belirli bir değer yerine belirli bir aralıkta değer alma olasılığının hesaplanması yoluna gidilir. Sürekli bir x şans değişkenin a ile b arasında olma olasılığı; şeklinde hesaplanır.

Örnek: f(x) fonksiyonu aşağıdaki gibi tanımlanıyor olsun a) f(x) olasılık yoğunluk fonksiyonu mudur? ise f(x) olasılık yoğunluk fonksiyonudur. olduğundan f(x) olasılık yoğunluk fonksiyonudur. b) P ( 1,5 < x < 1,8 ) = ?

Sürekli Şans Değişkenleri İçin Beklenen Değer ve Varyans