Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yol Geri besleme http://www.willamette.edu/~gorr/classes/cs449/rnn1.html
Dinamik Sistem Önce lineer dinamik sistemler hakkında bildiklerimizi hatırlayalım... durum değişkeni ilk koşul çıkış değişkeni giriş değişkeni Bu değişkenlere ilişkin başka neyi belirtmemiz gerek........ Bu sistemin çözűmű.....
Çözümü bir daha yazarsak özvektörler Bir özel hal: Otonom sistem Çözümü bir daha yazarsak özvektörler özdeğerler Çözüm, özvektörler ve özdeğerler ile nasıl değişir .............................................................................................................
Özvektörleri aynı özdeğerleri farklı iki sistem
Hangisi daha hızlı sıfıra yaklaşıyor ? A1 sistemi A2 sistemi
Özdeğerleri aynı özvektörleri farklı iki sistem
B1 sistemi B2 sistemi
Bu durumda lineer sistemin çözümleri neler olabilir? S. Haykin, “Neural Networks- A Comprehensive Foundation”2nd Edition, Prentice Hall, 1999, New Jersey. Tüm bu durum portrelerinde ortak bir şey var, ne?
Dinamik sistemin özel bir çözümü: Denge noktası Kaç tane denge noktası olabilir? Sistemin davranışını incelemenin bir yolu kararlılığını incelemektir. Tanım: Lyapunov anlamında kararlılık sistemine ilişkin bir denge noktası olsun. Verilen herhangi bir için eşitsizliği eşitsizliğini gerektirecek şekilde bir bulunabiliyorsa denge noktası Lyapunov anlamında kararlıdır. Lineer sistemlerde denge noktasının Lyapunov anlamında kararlılığını incelemek için ne yapıyoruz? Denge noktasının kararlılığı neye denk, neden?
Lyapunov anlamında kararlılığı incelemenin bir yöntemi nedir? (Dolaysız) 1. Yöntem (Dolaylı) Lyapunov’un 2. yöntemi Tanım: Lyapunov Fonksiyonu Lyapunov Fonksiyonudur Teorem: Lyapunov Fonksiyonu olmak üzere, denge noktasının kararlı olması için yeter koşul için olmasıdır. 2. dereceden lineer olmayan bir dinamik sistemin kalıcı hal çözümleri için ne diyebiliriz? Kararlı denge noktaları Poincare- Bendixson Teoremi: Limit çevrim
Lineer sistem modeli neden yetersiz? “Virtually, all physical systems are nonlinear in nature.” M. Vidyasagar sonlu kaçış zamanı çoklu yalıtılmış denge noktası limit çevrim altharmonik, harmonik ve neredeyse periyodik çözümler kaos çoklu davranış Neden hep lineer sistemler ele alınıyor? “. . . not to produce the most comprehensive descriptive model but to produce the simplest possible model that incorporates the major features of the phenomenon of interest.” Howard Emmons
Lineer olmayan sistemlerde başka nasıl çözümler var? Neden Sonuç Kütle çekim yasası Astronomik olaylar Atmosferin hareketleri Hava durumu tahmini Isaac Newton [1643-1727] G.W.F. Von Leibniz [1646-1716] Determinizm Öngörü S. Haykin, “Neural Networks- A Comprehensive Foundation”, 2nd Edition, Prentice Hall, 1999, New Jersey.
Laplace’s Demon: “If you can imagine a consciousness great enough to know the exact locations and velocities of all the objects in the universe at the present instant, as well as all forces, then there would be no secrets from this consciousness. It could calculate anything about the past or future from the laws of cause and effect.” Werner Heisenberg [1901-1976] Belirsizlik Kuramı (1927): Herhangi bir cismin konumu ve hızı aynı anda tam olarak belirlenemez. “In the strict formulation of the causality law-’When we know the present precisely, we can calculate the future’- It is not the final clause, but rather the premise, that is false. We cannot know the present in all its determining details.” Yaklaşık olarak birbirine benzer nedenler yaklaşık olarak birbirine benzer sonuçlar doğururlar. Ed Lorenz [1917-2008] Kelebek Kanadı Etkisi (1960):
Dinamik Yapay Sinir Ağı Modelleri Nasıl bir sistem? Sonuç Determinizm Öngörü Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) Hopfield Ağı, Elman Ağı