Elektrik Devrelerinin Temelleri

Slides:



Advertisements
Benzer bir sunumlar
Biyomedikal Sistemlerin Modellenmesi ve Kontrolü Neslihan Serap Şengör İ.T.Ü. Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Advertisements

Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi
Devre ve Sistem Analizi Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Lineer Direnç Devreleri Lineer, zamanla değişmeyen direnç elemanları Bağımsız kaynaklar Amaç: Özel bir grup direnç elemanlarından oluşmuş devrelerin çözümü.
Elektrik Devrelerinin Temelleri dersinde ne yapacağız? Amaç: Fiziksel devrelerin elektriksel davranışlarını öngörme akım ve gerilim Hatırlatma Teori oluşturken.
Graf Teorisi Pregel Nehri
1. Mertebeden Lineer Devreler
Maksimum Güç Transferi Teoremi
Zamanla Değişmeyen Lineer Kapasite ve
Lineer, Zamanla değişmeyen 2- Kapılılar Zorlanmış çözüm ile ilgileniyor İlk koşullar sıfır 1- kapılılar için tanımladığımız Thevenin-Norton eşdeğerlerini.
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Özkan Karabacak oda no:2307 tel.
Devre Denklemleri: Genelleştirilmiş Çevre Akımları Yöntemi
Toplamsallık ve Çarpımsallık Özelliği
3-Fazlı Devreler Neden? Yüksek Gerilim Üç Faz AC- Kaynak
+ + v v _ _ Lineer Olmayan Direnç Bazı Özel Lineer Olmayan Dirençler
Tanım: ( Temel Çevreler Kümesi)
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
2-Uçlu Direnç Elemanları
Elektrik Devrelerinin Temelleri dersinde ne yapacağız? Amaç: Fiziksel devrelerin elektriksel davranışlarını öngörme akım ve gerilim Hatırlatma Teori oluşturken.
Negatif-Pozitif Geribesleme Devreleri Lineer bölgede v in vdvd ioio +vo+vo v in ioio +vo+vo +-+- vdvd.
Devre ve Sistem Analizi
3. Kirchhoff’un Akım Yasası (KAY)
Eleman Tanım Bağıntıları
Elektrik Devrelerinin Temelleri
Elektrik Mühendisliğinde Matematiksel Yöntemler
Elektrik Devrelerinin Temelleri
Devre ve Sistem Analizi
Devre Fonksiyonu: Özellik: Herhangibir devre fonksiyonunun genliği w’nın çift fonksiyonudur, fazı da her zaman w’nın tek fonksiyonudur. Tanıt: ve Lemma’dan.
Sürekli Sinüsoidal Hal
Eleman Tanım Bağıntıları
Genelleştirilmiş Çevre Akımları Yöntemi
İşlemsel Kuvvetlendirici
Eleman Tanım Bağıntıları
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
Elektrik Devrelerinin Temelleri
npn Bipolar Tranzistör Alçak Frekanslardaki Eşdeğeri
Genelleştirilmiş Çevre Akımları Yöntemi
Seri ve Paralel 2-uçlu Direnç Elemanlarının Oluşturduğu 1-Kapılılar
Ankara Üniversitesi Mühendislik Fakültesi Fizik Mühendisliği Katıların Manyetik Özellikleri Yumuşak Manyetik Malzemeler.
Hatırlatma: Kompleks Sayılar
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
Elektrik Mühendisliğinde Matematiksel Yöntemler
+ + v v _ _ Hatırlatma Lineer Olmayan Direnç
_ _ Bazı Lineer 2-kapılı Direnç Elemanları
+ - i6 =2i i ik1 =cos2t Vk2 =sin(3t+15) R1 C6 ik1 Vk2 R1 = R1 = 1 ohm
Çok-Uçlu Direnç Elemanları
Ders Hakkında 1 Yarıyıl içi sınavı 11 Nisan 2010 % 26
Maksimum Güç Transferi Teoremi
Ders Hakkında 1 Yarıyıl içi sınavı 14 Nisan 2014 % 30
Hatırlatma * ** ***.
Lineer olmayan 2-kapılı Direnç Elemanları
Akım kontrollü gösterimini elde ediniz
KAY ve KGY toplu parametreli devrelerde geçerli
_ _ _ DC Çalışma Noktası Çözüm i tek çözüm çok çözüm + çözüm yok N Is
SSH’de Güç ve Enerji Kavramları
Lemma 1: Tanıt: 1.
Laplace dönüşümünün özellikleri
Matrise dikkatle bakın !!!!
3-Fazlı Devreler Neden? Yüksek Gerilim Üç Faz AC- Kaynak
Bazı Doğrusal Olmayan Sistemler
ELEKTRİK DEVRE TEMELLERİ
İşlemsel Kuvvetlendirici
Sunum transkripti:

Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:0212 285 3610 sengorn@itu.edu.tr

Ders Hakkında 1 Yarıyıl içi sınavı 23 Kasım 2010 % 20 5 Kısa sınav 12 Ekim 26 Ekim 9 Kasım 7 Aralık 21 Aralık % 20 2 Ödev % 20 Yarıyıl Sonu Sınavı % 40

Kaynaklar: Yılmaz Tokad, “ Devre Analizi Dersleri” Kısım I, Çağlayan Kitabevi, 1986.   Cevdet Acar, “Elektrik Devrelerinin Analizi” İ.T.Ü. Yayınları, 1995. L.O. Chua, C.A. Desoer, S.E. Kuh. “Linear and Nonlinear Circuits” Mc.Graw Hill, 1987, New York ( İşlenen Bölümler: 1-8, 12)

Elektrik Devrelerinin Temelleri dersinde ne yapacağız? Amaç: Fiziksel devrelerin elektriksel davranışlarını öngörme akım ve gerilim Uygulama alanı: boyut bir fikir verebilir gerilim μV MV akım fA MA frekans 0 Hz 1GHz güç 10-14 W 109 W

Radial-Basis Models for Feedback Systems With Fading Memory Fiziksel Devre ... IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 48, NO. 9, SEPTEMBER 2001 Radial-Basis Models for Feedback Systems With Fading Memory David M. Walker, Nicholas B. Tufillaro, and Paul Gross http://www.drchaos.net/drchaos/Papers/io_7.pdf

Abstract—We discuss how to build nonlinear input-output models of low-dimensional deterministic systems for both static and dynamic (feedback) systems with “fading memory.” To build the dynamic models a new form of radial-basis functions is introduced which, in the absence of an input, have the property that they converge to a constant solution. The utility of these models is illustrated by building accurate and stable models for electronic circuits with dynamic (memory) effects. Index Terms—Embedding, nonlinear, system identification.

... ve modeli

Teori oluşturken işe nasıl başlarız? Tanımlanmamış büyüklükler Aksiyomlar Sonra ne yaparız? Yeni büyüklükler için: Tanımlar Yeni sonuçlar için: Teoremler

+ + _ _ Elektrik Devre Teorisi Tanımlanmamış büyüklükler Akım Gerilim i(t) [A] v(t) [V] Uyarma Devresi A V + _ + _

+ + _ _ Nasıl ölçeceğimize dikkat etmemiz gerekiyor uyumlu çift tanımlanacak akım ve gerilim + _ V2 V3 V1 1 1 2 3 İ1 (t) İ1 (t) İ2 (t) 3- uçlu eleman + v1 (t) _ 2 Kaç ucu var? İ3 (t) iki uçlu eleman i1(t0)=2A v1(t0)=2A i1(t1)=-5A v1(t1)=-32V

+ + + + _ _ _ _ Aksiyomlar 1. Toplu Parametreli Devre Ne demek? 1. Toplu Parametreli Devre Fiziksel devrede her aletin uçlarındaki akım i(t) ve gerilim v(t) her t anında tam olarak tanımlanmışsa, devre toplu parametreli devredir. Kirchhoff’un Gerilim Yasası (1845) Önce biraz hazırlık n düğümü olan toplu parametreli, birleşik bir devrede herhangi bir düğümü referans düğümü olarak seç. seçilen referans düğümüme göre n-1 tane düğüm gerilimi tanımla . . . 1 2 3 k n-1 n k. düğüm ile j. düğüm arasındaki gerilim farkı: vkj + _ + _ e1 + _ Vkn-1 e2 e3 + _ 1824-1887 Königsberg Üniversitesi Berlin Üniversitesi Breslau Üniversitesi Heidelberg Üniversitesi ek en-1 en=0

2. Kirchhoff’un Gerilim Yasası (KGY) Tüm toplu parametreli birleşik devrelerde referans düğümü keyfi seçilmek üzere tüm k, j düğüm çiftleri için, her t anında bağıntısı geçerlidir. 2. Kirchhoff’un Gerilim Yasası (KGY) Tüm toplu parametreli birleşik devrelerde tüm kapalı düğüm dizileri için, her t seçilen kapalı bir düğüm dizisi için düğümden düğüme gerilimlerin cebirsel toplamı sıfırdır. Burada ters olan bir şey var, nedir?

Düğüm gerilimleri cinsinden Kapalı düğüm dizileri cinsinden KGY KGY Teorem: Düğüm gerilimleri cinsinden Kapalı düğüm dizileri cinsinden KGY KGY Tanıt: Düğüm gerilimleri cinsinden KGY Kapalı düğüm dizileri cinsinden KGY ? Bir düğüm dizisi oluşturalım a-b-c-d-a Her hangi bir t anında seçilen kapalı düğüm dizisi için düğümden düğüme gerilimlerin cebirsel toplamını yazalım Düğüm gerilimleri cinsinden KGY Bu nasıl yazıldı?

Kapalı düğüm dizileri cinsinden KGY p-q-r-p r düğümünü referans seçelim Bu nasıl yazıldı?

+ _ Kirchhoff’un Akım Yasası (KAY) içi ve dışı tanımlı, sadece devre elemanlarını birleştiren bağlantıları kesecek şekilde çizilmiş yüzey Gauss Yüzeyi 3. Kirchhoff’un Akım Yasası (KAY) Tüm toplu parametreli devrelerde, tüm Gauss yüzeyleri için her t anında Gauss yüzeyini kesen akımların cebirsel toplamı sıfırdır. 3. Kirchhoff’un Akım Yasası (KAY) (Düğümler için) Tüm toplu parametreli birleşik devrelerde, her t anında, herhangi bir düğümden çıkan akımların cebirsel toplamı sıfırdır. Burada da ters olan bir şey var, nedir?