Devre ve Sistem Analizi

Slides:



Advertisements
Benzer bir sunumlar
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Advertisements

Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi
Devre ve Sistem Analizi Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Bir örnek : Sarkaç. Gradyen Sistemler E(x)’in zamana göre türevi çözümler boyunca Gradyen sistemlere ilişkin özellikler Teorem 6: (Hirsh-Smale-Devaney,
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Lineer Direnç Devreleri Lineer, zamanla değişmeyen direnç elemanları Bağımsız kaynaklar Amaç: Özel bir grup direnç elemanlarından oluşmuş devrelerin çözümü.
Elektrik Devrelerinin Temelleri dersinde ne yapacağız? Amaç: Fiziksel devrelerin elektriksel davranışlarını öngörme akım ve gerilim Hatırlatma Teori oluşturken.
A1 sistemi A2 sistemi Hangisi daha hızlı sıfıra yaklaşıyor ? Hatırlatma.
Graf Teorisi Pregel Nehri
Ders Hakkında 1 Yarıyıl içi sınavı 16 Nisan 2013 % 22 3 Kısa sınav 12 Mart 9 Nisan 14 Mayıs % 21 1 Ödev % 7 Yarıyıl Sonu Sınavı % 50.
Kararlılık Sıfır giriş kararlılığı Tanım: (Denge noktası) sisteminin sabit çözümleri, sistemin denge noktalarıdır. nasıl belirlenir? Cebrik denkleminin.
Bu durumda lineer sistemin çözümleri neler olabilir? Tüm bu durum portrelerinde ortak bir şey var, ne? S. Haykin, “Neural Networks- A Comprehensive Foundation”2.
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
1. Mertebeden Lineer Devreler
Zamanla Değişmeyen Lineer Kapasite ve
Lineer, Zamanla değişmeyen 2- Kapılılar Zorlanmış çözüm ile ilgileniyor İlk koşullar sıfır 1- kapılılar için tanımladığımız Thevenin-Norton eşdeğerlerini.
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Özkan Karabacak oda no:2307 tel.
Devre Denklemleri: Genelleştirilmiş Çevre Akımları Yöntemi
Toplamsallık ve Çarpımsallık Özelliği
+ + v v _ _ Lineer Olmayan Direnç Bazı Özel Lineer Olmayan Dirençler
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
Doğrusal Olmayan Devreler, Sistemler ve Kaos
2-Uçlu Direnç Elemanları
Negatif-Pozitif Geribesleme Devreleri Lineer bölgede v in vdvd ioio +vo+vo v in ioio +vo+vo +-+- vdvd.
Elektrik Devrelerinin Temelleri
Eleman Tanım Bağıntıları
Elektrik Devrelerinin Temelleri
Elektrik Mühendisliğinde Matematiksel Yöntemler
Elektrik Devrelerinin Temelleri
Devre ve Sistem Analizi
Devre Fonksiyonu: Özellik: Herhangibir devre fonksiyonunun genliği w’nın çift fonksiyonudur, fazı da her zaman w’nın tek fonksiyonudur. Tanıt: ve Lemma’dan.
Sürekli Sinüsoidal Hal
Eleman Tanım Bağıntıları
Genelleştirilmiş Çevre Akımları Yöntemi
İşlemsel Kuvvetlendirici
Eleman Tanım Bağıntıları
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
Elektrik Devrelerinin Temelleri
npn Bipolar Tranzistör Alçak Frekanslardaki Eşdeğeri
Genelleştirilmiş Çevre Akımları Yöntemi
Seri ve Paralel 2-uçlu Direnç Elemanlarının Oluşturduğu 1-Kapılılar
Hatırlatma: Durum Denklemleri
Hatırlatma: Kompleks Sayılar
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
Elektrik Mühendisliğinde Matematiksel Yöntemler
İlk olarak geçen hafta farklı a değerleri için incelediğiniz lineer sisteme bakalım: MATLAB ile elde ettiğiniz sonuçları analitik ifade ile elde edilen.
+ + v v _ _ Hatırlatma Lineer Olmayan Direnç
_ _ Bazı Lineer 2-kapılı Direnç Elemanları
+ - i6 =2i i ik1 =cos2t Vk2 =sin(3t+15) R1 C6 ik1 Vk2 R1 = R1 = 1 ohm
Çok-Uçlu Direnç Elemanları
Ders Hakkında 1 Yarıyıl içi sınavı 11 Nisan 2010 % 26
Ders Hakkında 1 Yarıyıl içi sınavı 14 Nisan 2014 % 30
Hatırlatma * ** ***.
Lineer olmayan 2-kapılı Direnç Elemanları
Akım kontrollü gösterimini elde ediniz
KAY ve KGY toplu parametreli devrelerde geçerli
_ _ _ DC Çalışma Noktası Çözüm i tek çözüm çok çözüm + çözüm yok N Is
SSH’de Güç ve Enerji Kavramları
Lemma 1: Tanıt: 1.
Laplace dönüşümünün özellikleri
Diferansiyel denklem takımı
Matrise dikkatle bakın !!!!
Bazı Doğrusal Olmayan Sistemler
İşlemsel Kuvvetlendirici
Sunum transkripti:

Devre ve Sistem Analizi Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:0212 285 3610 sengorn@itu.edu.tr

Ders Hakkında 1 Yarıyıl içi sınavı 5 Nisan 2010 % 20 5 Kısa sınav 22 Şubat 8 Mart 22 Mart 19 Nisan 3 Mayıs % 20 2 Ödev % 20 Yarıyıl Sonu Sınavı % 40

Kaynaklar: Yılmaz Tokad, “ Devre Analizi Dersleri” Kısım II, İ.T.Ü. Yayınları, 1977.   Yılmaz Tokad, “ Devre Analizi Dersleri” Kısım IV, Çağlayan Kitabevi, 1987. Cevdet Acar, “Elektrik Devrelerinin Analizi” İ.T.Ü. Yayınları, 1995. L.O. Chua, C.A. Desoer, S.E. Kuh. “Linear and Nonlinear Circuits” Mc.Graw Hill, 1987, New York ( İşlenen Bölümler: 9,10,11,13) M. Jamshidi, M. Tarokh, B. Shafai. “Computer-Aided Analysis and Design of Linear Control Systems”, Prentice Hall, 1992 ( İşlenen Bölümler: 2,3)

Elektrik Devrelerinin Temelleri dersinde neler öğrendiniz? Amaç: Fiziksel devrelerin elektriksel davranışlarını öngörme akım ve gerilim Devre TeorisindeTanımlanmamış Büyüklükler : akım ve gerilim Devre Teorisinin Aksiyomları: Toplu parametreli, KAY, KGY Eleman Tanım Bağıntıları: Lineer ve lineer olmayan direnç elemanları, Kapasite, Endüktans Lineer zamanla değişmeyen devrelere özgü yöntemler: Düğüm gerilimleri, çevre akımları Bazı Teoremler: Tellegen Teoremi, Toplamsallık ve Çarpımsallık, Thevenin ve Norton Teoremleri Dinamik Devreler ve Çözümleri

Hatırlatma: Kompleks Sayılar x Kartezyen Koordinatlar Polar Koordinatlar

Hatırlatma: Dinamik Devrelerin Çözümleri Durum Geçiş Matrisi öz çözüm zorlanmış çözüm öz çözüm zorlanmış çözüm

Öz çözümü bir daha yazarsak özvektörler özdeğerler Öz çözüm, özvektörler ve özdeğerler ile nasıl değişir .............................................................................................................

Bu durumda lineer sistemin çözümleri neler olabilir? S. Haykin, “Neural Networks- A Comprehensive Foundation”2nd Edition, Prentice Hall, 1999, New Jersey. Tüm bu durum portrelerinde ortak bir şey var, ne?

Dinamik sistemin özel bir çözümü: Denge noktası Kaç tane denge noktası olabilir? Sistemin davranışını incelemenin bir yolu kararlılığını incelemektir. Tanım: Lyapunov anlamında kararlılık sistemine ilişkin bir denge noktası olsun. Verilen herhangi bir için eşitsizliği eşitsizliğini gerektirecek şekilde bir bulunabiliyorsa denge noktası Lyapunov anlamında kararlıdır. Lineer sistemlerde denge noktasının Lyapunov anlamında kararlılığını incelemek için ne yapılıyor? Denge noktasının kararlılığı neye denk, neden?