Doğrusal Olmayan Devreler, Sistemler ve Kaos

Slides:



Advertisements
Benzer bir sunumlar
Sadık Sayim Oğuz Yelbey Ali Pala Mustafa Dursun
Advertisements

Giriş Dikkat Altsistemi Yönlendirme Altsistemi Kısa Süreli Bellek Uzun Süreli Bellek Kontrol Birimi Kontrol Birimi F1 F2 ART nasıl çalışıyor? Mete Balcı,
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Geçen hafta anlatılanlar Değişmez küme Değişmez kümelerin kararlılığı Bildiğimiz diğer kararlılık tanımları ve değişmez kümenin kararlılığı ile ilgileri.
Dinamik sistemin kararlılığını incelemenin kolay bir yolu var mı? niye böyle bir soru sorduk? Teorem 1: (ayrık zaman sisteminin sabit noktasının kararlılığı.
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
BİYOMEDİKAL MÜHENDİSLİĞİNDE İLERİ KONULAR Neslihan Serap Şengör Oda no: 1107 Tel:
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi
Devre ve Sistem Analizi Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Bir örnek : Sarkaç. Gradyen Sistemler E(x)’in zamana göre türevi çözümler boyunca Gradyen sistemlere ilişkin özellikler Teorem 6: (Hirsh-Smale-Devaney,
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
Bu durumda lineer sistemin çözümleri neler olabilir? Tüm bu durum portrelerinde ortak bir şey var, ne? S. Haykin, “Neural Networks- A Comprehensive Foundation”2.
Uyarlanabilir Yankılaşım Teorisi (Adaptive Resonance Theory- Grossberg ) A crucial metatheoretical.
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
Kaos’a varmanın yolları DüzenKaos Nasıl? Umulmadık yapısal değişiklikler ile Bu nasıl oluşabilir? Ardışıl bir dizi dallanma ile, peryod katlanmasına yol.
1. Mertebeden Lineer Devreler
Fizyolojik Sistemlerin Modellenmesi ve Kontrolü
Zamanla Değişmeyen Lineer Kapasite ve
Lineer, Zamanla değişmeyen 2- Kapılılar Zorlanmış çözüm ile ilgileniyor İlk koşullar sıfır 1- kapılılar için tanımladığımız Thevenin-Norton eşdeğerlerini.
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Özkan Karabacak oda no:2307 tel.
Toplamsallık ve Çarpımsallık Özelliği
Doğrusal Olmayan Devreler, Sistemler ve Kaos
+ + v v _ _ Lineer Olmayan Direnç Bazı Özel Lineer Olmayan Dirençler
Düğüm-Eyer dallanması için ele alınan ön-örneğe yüksek mertebeden terimler eklense davranışı yapısal olarak değişir mi? Bu soru neden önemli Lemma sistemi.
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Müştak Erhan Yalçın oda no:2304.
2- Jordan Kanonik Yapısı
Izhikevich Sinir Hücresinin davranışı Deneysel sonuçModelden elde edilen sonuç E.M. Izhikevich, “Dynamical Systems in Neuroscience”, MIT Press, 2007.
2-Uçlu Direnç Elemanları
Negatif-Pozitif Geribesleme Devreleri Lineer bölgede v in vdvd ioio +vo+vo v in ioio +vo+vo +-+- vdvd.
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Devre ve Sistem Analizi
x* denge noktası olmak üzere x* sabit nokta olmak üzere
Elektrik Devrelerinin Temelleri
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Devre ve Sistem Analizi
(Self-Organizing Map- Kohonen )
Dinamik Sistem Dinamik sistem: (T, X, φt ) φt : X X a1) φ0=I
Doğrusal Olmayan Devreler, Sistemler ve Kaos
h homeomorfizm h homeomorfizm h 1-e-1 ve üstüne h sürekli h
Eleman Tanım Bağıntıları
İşlemsel Kuvvetlendirici
Poincare Dönüşümü
Eleman Tanım Bağıntıları
Özdeğerler, Sıfırlar ve Kutuplar
Dinamik Yapay Sinir Ağı Modelleri
npn Bipolar Tranzistör Alçak Frekanslardaki Eşdeğeri
Seri ve Paralel 2-uçlu Direnç Elemanlarının Oluşturduğu 1-Kapılılar
Dinamik Sistem T=R sürekli zaman Dinamik sistem: (T, X, φt ) T zaman
Hatırlatma: Kompleks Sayılar
İlk olarak geçen hafta farklı a değerleri için incelediğiniz lineer sisteme bakalım: MATLAB ile elde ettiğiniz sonuçları analitik ifade ile elde edilen.
+ + v v _ _ Hatırlatma Lineer Olmayan Direnç
Bazı sorular: Topolojik eşdeğerlilik ne işimize yarayacak, topolojik
ART nasıl çalışıyor? Giriş Dikkat Altsistemi Yönlendirme Altsistemi F2
_ _ Bazı Lineer 2-kapılı Direnç Elemanları
Çok-Uçlu Direnç Elemanları
Ders Hakkında 1 Yarıyıl içi sınavı 11 Nisan 2010 % 26
Bazı sorular: Topolojik eşdeğerlilik ne işimize yarayacak, topolojik
Geçen haftaki tanımlar:
Lineer olmayan 2-kapılı Direnç Elemanları
Akım kontrollü gösterimini elde ediniz
Hatırlatma Yörünge: Or(xo)
_ _ _ DC Çalışma Noktası Çözüm i tek çözüm çok çözüm + çözüm yok N Is
Laplace dönüşümünün özellikleri
Ön bilgi: Laplace dönüşümü
Bazı Doğrusal Olmayan Sistemler
İşlemsel Kuvvetlendirici
Sunum transkripti:

Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no:0212 285 3610 sengorn@itu.edu.tr Özkan Karabacak oda no:2307 tel no:0212 285 6729 karabacak@itu.edu.tr

Doğrusal Olmayan Devreler, Sistemler ve Kaos 13 Şubat 2014- 27 Mart 2014 Neslihan Serap Şengör (7 hafta) 1 Ödev % 15 Yarıyıliçi Sınavı 24 Nisan 2014 % 25 03 Nisan 2014- 15 Mayıs 2014 Özkan Karabacak (6 hafta) 1 Ödev % 20 Yarıyılsonu Sınavı % 40

Yararlanılan Kaynaklar H.K.Khalil, “Nonlinear Systems”, 3rd Edition, Pearson Education, 2000. Y.A. Kuznetsov, “Elements of Applied Bifurcation Theory”, Springer, 2004. J. Guckenheimer, P. Holmes, “Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields”, Springer-Verlag, 1983. S. Wiggens, “Introduction to Applied Nonlinear Dynamical Systems and Chaos”, Springer, 2003. S.H. Strogatz, “Nonlinear Dynamics and Chaos”, Addison-Wesley Pub. Comp., 2000. E. Ott, “Chaos in Dynamical Systems”, Cambridge University Press, 1993. P.G. Drazin, “Nonlinear Systems”, Cambridge University Press, 1993.

Yararlanılacak Araç XPP/XPPAUT Dinamik sistemleri çözmek, durum portreleri, dallanma diyagramlarını elde etmek için kullanılabilecek bir araç B. Ermentrout, “Simulating, Analyzing, and Animating Dynamical systems”, siam,2002. http://www.math.pitt.edu/~bard/xpp/whatis.html

Xppaut Çalıştırmak İçin Gerekenler A. Yiğit Xppaut Çalıştırmak İçin Gerekenler Xppaut, “xpp” ve “auto” isimli iki parçadan oluşur. Birbirleri arasında daima geçiş yapabilirsiniz. “auto”, dallanma diyagramını hesaplamak için kullanılır. http://www.math.pitt.edu/~bard/xpp/xpp.html adresinden indirilebilir. xppaut_yüklediğiniz_dizin\xppaut\windows\xppall dizini altında xpp.bat dosyası mevcuttur. Bu dosya içerisine uygulama ile ilgili adreslerin doğru yazılması gerekmektedir. Örneğin benim makinemde xppaut aşağıda olan adresde yüklüdür. “G:\24_mart_2008_new_data\Doktora”. Dolayısıyla G:\24_mart_2008_new_data\Doktora\xppaut\windows\xppall adresinde olan xpp.bat dosyasının içeriği aşağıdaki şekildedir. set BROWSER=C:\Program Files\Internet Explorer\iexplore.exe Set XPPHELP=G:\24_mart_2008_new_data\Doktora\xppaut\windows\xppall\help\xpphelp.html set DISPLAY=127.0.0.1:0.0 set HOME=G:\24_mart_2008_new_data\Doktora\xppaut\windows\xppall G:\24_mart_2008_new_data\Doktora\xppaut\windows\xppall\xppaut %1 %2 %3 pause

Xppaut çalıştığında nasıl bir ekran açılır? A. Yiğit Xppaut çalıştığında nasıl bir ekran açılır?

Örneklerle Dallanma Diyagramı Oluşturma A. Yiğit Örneklerle Dallanma Diyagramı Oluşturma 21 Şubat Perşembe günü saat 11:30-12:30 arası Rahmi Elibol bilgi verecek

Neden doğrusal olmayan devreler, sistemler ve kaos? Virtually, all physical systems are nonlinear in nature. M. Vidyasagar O zaman neden hep lineer devreler ve sistemler ile ilgilenildi? “. . . not to produce the most comprehensive descriptive model but to produce the simplest possible model that incorporates the major features of the phenomenon of interest.” Howard Emmons Burada lineer sistemlerin cozumunun analitik elde edilebildigini, ve lineer sistemlerin davranisini incelemek icin genel yontemlerin oldugunu belirtmek gerek. Ve once bir lineer sistemler ile ne mumkun ona bakalim diyerek devam edecegim

Lineer sistemi hatırlıyalım... Hatırlatma Lineer sistemi hatırlıyalım... Başka nasıl ifade ediyoruz? durum değişkeni ilk koşul çıkış değişkeni giriş değişkeni Bu değişkenlere ilişkin başka neyi belirtmemiz gerek........ Bu sistemin çözümü..... Burada var olan fiziksel bir yapinin matematiksel modelinin ne oldugu nasil elde edildigine iliskin genel sozler soyleyecegim bu ders kapsaminda dinamik sistemler ile ugrasilacagindan hem ayrik hem de surekli zamani beraber ele alacagimizdan bahsedecegim. Dinamik sistem nedir ondan kisaca soz edecegim, matematiksel modelin nasil farkli yaklasimlar ile elde edildiginden de bahsedecegim.

Ayrık zamanda lineer sistemi hatırlıyalım... Hatırlatma Ayrık zamanda lineer sistemi hatırlıyalım... Bu sistemin çözümü.....

Çözümü bir daha yazarsak özvektörler Hatırlatma Bir özel hal: Otonom sistem Çözümü bir daha yazarsak özvektörler özdeğerler Çözüm, özvektörler ve özdeğerler ile nasıl değişir?

Özvektörleri aynı özdeğerleri farklı iki sistem Hatırlatma Özvektörleri aynı özdeğerleri farklı iki sistem Hangisi daha hızlı sıfıra yaklaşıyor ? A1 sistemi A2 sistemi

Özdeğerleri aynı özvektörleri farklı iki sistem Hatırlatma Özdeğerleri aynı özvektörleri farklı iki sistem B1 sistemi B2 sistemi Hızlarında bir farklılık var mı? B1 sistemi B2 sistemi

Bu durumda lineer sistemin çözümleri neler olabilir? Hatırlatma Bu durumda lineer sistemin çözümleri neler olabilir? S. Haykin, “Neural Networks- A Comprehensive Foundation”2nd Edition, Prentice Hall, 1999, New Jersey. Tüm bu durum portrelerinde ortak bir şey var, ne?

Otonom lineer sistem için başka ne diyebiliriz? Hatırlatma Otonom lineer sistem için başka ne diyebiliriz? Özel bir çözüm: denge noktası Denge noktasının Lyapunov anlamında kararlılığı Tanım: Lyapunov anlamında kararlılık sistemine ilişkin bir denge noktası olsun. Verilen herhangi bir için eşitsizliği eşitsizliğini gerektirecek şekilde bir bulunabiliyorsa denge noktası Lyapunov anlamında kararlıdır. Sistemin kararliligi Ozdegerlerin yerini bilmek yeterli Ve Lyapunov anlamında kararlılığı lineer sistemde anlamak için.....

Bazı Doğrusal Olmayan Sistemler Sarkaç Θ mg l yerçekimi sürtünme Durum uzayı gösterimi durum değişkenleri

Denge noktalarının civarındaki davranışı incelemek istesek Bu denge noktalarının hepsi anlamlı mı? Önce ne yapacağız ? denge noktaları π -π 2π -2π Denge noktalarının civarındaki davranışı incelemek istesek ne yapmamız gerekir? (0,0) civarında Bu sistemin kararlılığını incelemeyi biliyoruz ................................................................................

Bu sistemin de kararlılığını incelemeyi biliyoruz (π,0) civarında Bu sistemin de kararlılığını incelemeyi biliyoruz ...................................................................................... Sürtünmenin etkisini ihmal etsek.... (0,0)’ın civarı Bu sistemin kararlılığına baksak....................................... (π,0) civarı H.K.Khalil, “Nonlinear Systems”, 3rd Edition, Pearson Education, 2000.

Tünel Diyod Devresi H.K.Khalil, “Nonlinear Systems”, 3rd Edition, Pearson Education, 2000.

* * * * * * * Denge noktaları .... Okuma önerisi: H.K.Khalil, “Nonlinear Systems”, 3rd Edition, Prentice Hall, 2002 sf. 1-49. L.O. Chua, C.A. Desoer, S.E. Kuh. “Linear and Nonlinear Circuits” Mc.Graw Hill, 1987, New York sf. 363-439. H.K.Khalil, “Nonlinear Systems”, 3rd Edition, Pearson Education, 2000.

Dinamik Sistem Dinamik sistem: (T, X, φt ) T=R sürekli zaman T zaman Durum Gelişim Fonksiyonu Dinamik sistem: (T, X, φt ) T=R sürekli zaman φt : X X T zaman T=Z ayrık zaman a1) φ0=I a2) φt+s =φt ◦ φs ▪ X=Rn X durum uzayı X=Cn Dinamik sistem bir küme durumları belirten ve bir kural durumların zamanda gelişimini belirten oluşuyor.Durum uzayı icin: (Kuznetsov sf. 3-5) The state space has a certain natural structure alowing for comparision between different states. More specifically, a distance d between two states is defined making these sets metric spaces. ... Discrete time systems appear naturally in ecology and economics when the state of a system at a certain moment of time t completely determines its state after a year, say at t+1