F(.) y[n+1] Giriş Vektörü Giriş-Çıkış Eşleme Fonksiyonu Çıkış Mahmut Meral, Lisans Bitirme Ödevi, 2003 Giriş – Çıkış Modeline göre Dinamik Sistem Tanıma.

Slides:



Advertisements
Benzer bir sunumlar
Unsupervised Learning (Kümeleme)
Advertisements

Çok Katmanlı Yapay Sinir Ağı Modelleri
İlk Yapay Sinir Ağları.
Fırat Fehmi Aygün Aybars Moralı Dokuz Eylül Üniversitesi
Karar Ağaçları.
BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER
Yrd. Doç. Dr. Ayhan Demiriz
NEURAL NETWORK TOOLBOX VE UYGULAMALARI
BİYOİNFORMATİK NEDİR? BİYOİNFORMATİKTE KULLANILAN SINIFLAMA YÖNTEMLERİ
1.4 Analitik Düzlemde Vektörler YÖNLÜ DOĞRU PARÇASI :
YAPAY SİNİR AĞLARI VE BAYES SINIFLAYICI
PARÇACIĞIN KİNEMATİĞİ Düzlemde Eğrisel Hareket
DOĞRUSAL EŞİTSİZLİK SİSTEMLERİ
Makine Öğrenmesinde Yeni Problemler
Giriş Dikkat Altsistemi Yönlendirme Altsistemi Kısa Süreli Bellek Uzun Süreli Bellek Kontrol Birimi Kontrol Birimi F1 F2 ART nasıl çalışıyor? Mete Balcı,
Demetleme (Clustering)
Yapay Sinir Ağları (YSA)
Yapay Sinir Ağları (YSA)
Bulanık Mantık Kavramlar:
Yapay Zeka Desteği ile Parfüm Öneri Sistemi
Yapay Sinir Ağları (YSA)
Yapay Sinir Ağları (Artificial Neural Networks) Bir Yapay Sinir Ağı Tanımı (Alexander, Morton 1990) Yapay sinir ağı, basit işlemci ünitelerinden oluşmuş,
V2’nin q1 doğrultusunda ki bileşenine
Davranış durum Eğitilen sistem Değer Atama Ortam Kritik Ödül r δ Eğiticisiz Öğrenme Pekiştirmeli Öğrenme (reinforcement learning) Öğrenme işleminin her.
YAPAY SİNİR AĞLARI.
(Competitive Learning)
Metrik koşullarını sağlıyor mu?
Bazı Sorular Gerçekten de belirlenen ağırlıklar ile istenilen kararlı denge noktalarına erişmemizi sağlayacak dinamik sistem yaratıldı mı? Eğer evet ise,
(Competitive Learning)
Uyarlanabilir Yankılaşım Teorisi (Adaptive Resonance Theory- Grossberg ) A crucial metatheoretical.
Biyomedikal Sistemlerin Modellenmesi ve Kontrolü Neslihan Serap Şengör İ.T.Ü. Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Çok Katmanlı Algılayıcı-ÇKA (Multi-Layer Perceptron)
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Müştak Erhan Yalçın oda no:2304.
2- Jordan Kanonik Yapısı
Hata Fonksiyonları Lojistik Fonksiyon ß ß Huber Fonksiyonu ß ß.
Ayrık Zaman Hopfield Ağı ile Çağrışımlı Bellek Tasarımı Kullanılan Hücre Modeli: McCulloch-Pitts Eksik birşey var!! Örüntüler: 1. Aşama: Belleğin Oluşturulması.
Wisconsin Kart Sıralama Testi WCST
Izhikevich Sinir Hücresinin davranışı Deneysel sonuçModelden elde edilen sonuç E.M. Izhikevich, “Dynamical Systems in Neuroscience”, MIT Press, 2007.
Biz şimdiye kadar hangi uzaylar ile uğraştık:
“Bilgi”’nin Gösterimi “Bilgi” İnsan veya Makina Yorumlama Öngörme Uygun yanıt verme Depolanmış enformasyon veya model Kurallar: (1) Benzer sınıflardan.
İSTANBUL TEKNİK ÜNİVERSİTESİ ♦ ELEKTRONİK & HABERLEŞME MÜHENDİSLİĞİ Öğrenme nasıl gerçekleşiyor? Ağırlıklar hatayı en azlıyacak şekilde güncelleniyor Öğrenme.
Geriye Yayılım Algoritması
Yapay sinir ağı, basit işlemci ünitelerinden oluşmuş, çok
Engin Kaya Kontrol Mühendisliği İstanbul Teknik Üniversitesi
(Self-Organizing Map- Kohonen )
Engin Kaya Kontrol Mühendisliği İstanbul Teknik Üniversitesi
Dinamik Sistem Dinamik sistem: (T, X, φt ) φt : X X a1) φ0=I
Ayrık Zaman Hopfield Ağı ile Çağrışımlı Bellek Tasarımı
YAPAY SİNİR AĞLARININ YAPISI VE TEMEL ELEMANLARI
h homeomorfizm h homeomorfizm h 1-e-1 ve üstüne h sürekli h
Poincare Dönüşümü
Geriye Yayılım Algoritması (Back-Propagation Algorithm)
Dizinin Yakınsaklığı, Limit
ART nasıl çalışıyor? Giriş Dikkat Altsistemi Yönlendirme Altsistemi F2
Çok Katmanlı Algılayıcı-ÇKA (Multi-Layer Perceptron)
Bazı sorular: Topolojik eşdeğerlilik ne işimize yarayacak, topolojik
Geçen haftaki tanımlar:
Sinir Hücresi McCulloch-Pitts x1 w1 x2 w2 v y wm xm wm+1 1 '
Hopfield Ağı Ayrık zaman Sürekli zaman
Hatırlatma Yörünge: Or(xo)
Sistem Özellikleri: Yönetilebilirlik, Gözlenebilirlik ve Kararlılık
Eğiticisiz Öğrenme Amaç: Veri kümesinin belirli özelliklerini, özniteliklerini sadece veri kümesinden yararlanarak belirlemek Vektör Kuantalama Veri Tanımlama.
S. Haykin, “Neural Networks- A Comprehensive Foundation”,
Eğiticisiz Öğrenme Hatırlatma
Makine Öğrenmesinde Yeni Problemler
Yapay Zeka Nadir Can KAVKAS
MADDE VE YAPISI TEST.
Çok Katmanlı Algılayıcı-ÇKA (Multi-Layer Perceptron)
TEST.
Sunum transkripti:

F(.) y[n+1] Giriş Vektörü Giriş-Çıkış Eşleme Fonksiyonu Çıkış Mahmut Meral, Lisans Bitirme Ödevi, 2003 Giriş – Çıkış Modeline göre Dinamik Sistem Tanıma NARX (nonlinear autoregressive with exogenous inputs) modeli

Çok Katmanlı Ağ F(.) z -1 Giriş u(n) Çıkış y(n+1) u(n-1) u(n-m) y(n) y(n-1) y(n-k) Mahmut Meral, Lisans Bitirme Ödevi, 2003

Nonlineer Sistem F(.) z -1 Çok Katmanlı Ağ z y(n+1) ŷ(n+1) e(n)=y(n+1)- ŷ(n+1) Giriş u(n) z -1 Mahmut Meral, Lisans Bitirme Ödevi, 2003

Billings sistemi test sonuçları o- gerçek değer *- ağın çıkışı Mahmut Meral, Lisans Bitirme Ödevi, 2003

Feigenhoum sistemi için bir adım sonrasının öngörümü o- gerçek değer *- ağın çıkışı Mahmut Meral, Lisans Bitirme Ödevi, 2003

Feigenhoum sisteminin otonom davranışı o- gerçek değer *- ağın çıkışı Mahmut Meral, Lisans Bitirme Ödevi, 2003

Çok katmanlı ağın çekicisi Gerçek sistemin çekicisi Mahmut Meral, Lisans Bitirme Ödevi, 2003

Eğiticisiz Öğrenme Amaç: Veri kümesinin belirli özelliklerini, özniteliklerini sadece veri kümesinden yararlanarak belirlemek Öbekleme Vektör Kuantalama Veri Tanımlama gaos.org/~schleif/lvq_schema.png

Yarışmalı Öğrenme (Competitive Learning) Amaç: Verilen örüntüleri öbekleme Verilenler: n boyutlu p tane vektör Ağ Yapısı: Nasıl bir yapı? Öğrenme Kuralı: Öğrenme kuralı amaca göre değişiyor; ancak kural nasıl konulursa konulsun yapılan iş: Kazananı bul Ağırlığını değiştir nöronlara ilişkin ağırlıklar Kazananı belirlemek için eğitim kümesindeki tüm veriler için hesaplanmalı

Kazanan nöron’a ilişkin ağırlık Ağırlıkları Güncelleme: diğerleri Bir uygulama Vektör Kuantalama: Özdenetimli öznitelik belirleyici Vektör Kuantalama Eğitici Sınıflar Amaç: Sınıflandırma için belirlenen bölgelerin düzenlenmesi

Verilenler: Voroni vektörleri, giriş vektörleri Voroni vektörü ‘ye ilişkin sınıf girişinin ait olduğu sınıf Kazananı bul Öğrenme Kuralı: Ağırlıkları güncelle Ağırlıkları Güncelleme: ve ‘ye en yakın Voroni vektörü ise ve ‘ye en yakın Voroni vektörü ise Diğer Voroni vektörleri aynı kalıyor

Örnek 1: Kazananı bul kim kime benziyor onu belirlemek gerek Adım 1: Birinci örüntü için Yarışmalı Öğrenme nöronların ağırlıkları

Öğrenme hızının etkisi Yavaş ama salınım az Hızlı ama salınım çok Yakınsamıyor Metrik seçimi sonuçları değiştiriyor Taksi şöförü metriği seçilse idi: 2. örnek için 1. nöron yerine 2. nöron değişecekti İlk koşulların seçimi de sonuçları değiştiriyor 1. nöron kazanıyor 2. ve 3. nöron kazanamıyor 3 öbek değil 1 öbek oluşuyor 1. nöron 2,3,4 ve 5 2. nöron 1 3. nöron 6 örüntüleri için öbek oluşturuyor Ne zaman durdurulacak? Öbek merkezlerinde değişim olmamaya başladığında

Örnek 2: Vektör Kuantalama S1S1 S2S2 Adım 1: Birinci örüntü için 3. nöron kazanıyor 1. örüntü birinci sınıfa ait, kazanan 3. nöron ise ikinci sınıfı temsil ediyor 3. nöronun ağırlıklarını güncelle ve ‘ye en yakın Voroni vektörü ise